Nonmetrizable hereditarily Lindelöf spaces with point-countable bases from CH
HTML articles powered by AMS MathViewer
- by Eric K. Van Douwen, Franklin D. Tall and William A. R. Weiss
- Proc. Amer. Math. Soc. 64 (1977), 139-145
- DOI: https://doi.org/10.1090/S0002-9939-1977-0514998-1
- PDF | Request permission
Abstract:
A nonmetrizable hereditarily Lindelöf space with a point-countable base is obtained by using the continuum hypothesis to construct a Lusin subspace of a countable chain condition first countable nonseparable Baire space.References
- K. Alster and T. Przymusiński, Normality and Martin’s axiom, Fund. Math. 91 (1976), no. 2, 123–131. MR 415567, DOI 10.4064/fm-91-2-123-131
- G. P. Amirdžanov and B. È. Šapirovskiĭ, Everywhere-dense subsets of topological spaces, Dokl. Akad. Nauk SSSR 214 (1974), 249–252 (Russian). MR 0343228 H. R. Bennett, Quasi-developable spaces, Dissertation, Arizona State Univ., Tempe, Arizona, 1968. K. Devlin and H. Johnsbråten, The Souslin problem, Lecture Notes in Math., vol. 405, Springer-Verlag, New York, 1975. E. K. Van Douwen, The Pixley-Roy topology on spaces of subsets (preprint). —, Density of compactifications (preprint).
- R. E. Hodel, Metrizability of topological spaces, Pacific J. Math. 55 (1974), 441–459. MR 370520, DOI 10.2140/pjm.1974.55.441
- A. Hajnal and I. Juhász, On hereditarily $\alpha$-Lindelöf and $\alpha$-separable spaces. II, Fund. Math. 81 (1973/74), no. 2, 147–158. MR 336705, DOI 10.4064/fm-81-2-147-158
- I. Juhász, Cardinal functions in topology, Mathematical Centre Tracts, No. 34, Mathematisch Centrum, Amsterdam, 1971. In collaboration with A. Verbeek and N. S. Kroonenberg. MR 0340021
- Kenneth Kunen, Luzin spaces, Topology Proceedings, Vol. I (Conf., Auburn Univ., Auburn, Ala., 1976) Math. Dept., Auburn Univ., Auburn, Ala., 1977, pp. 191–199. MR 0450063
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- David J. Lutzer, A metrization theorem for linearly orderable spaces, Proc. Amer. Math. Soc. 22 (1969), 557–558. MR 248761, DOI 10.1090/S0002-9939-1969-0248761-1
- Ernest Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182. MR 42109, DOI 10.1090/S0002-9947-1951-0042109-4
- V. I. Ponomarev, The metrizability of a finally compact $p$-space with pointwise countable basis, Dokl. Akad. Nauk SSSR 174 (1967), 1274–1277 (Russian). MR 0216465
- Carl Pixley and Prabir Roy, Uncompletable Moore spaces, Proceedings of the Auburn Topology Conference (Auburn Univ., Auburn, Ala., 1969; dedicated to F. Burton Jones on the occasion of his 60th birthday), Auburn Univ., Auburn, Ala., 1969, pp. 75–85. MR 0397671 F. Rothberger, Eine äquivalenz zwischen der Kontinuumhypothese und der Existenz der Lusinschen und Sierpińskischen Mengen, Fund. Math 30 (1938), 215-217.
- Mary Ellen Rudin, A normal hereditarily separable non-Lindelöf space, Illinois J. Math. 16 (1972), 621–626. MR 309062
- Mary Ellen Rudin, Lectures on set theoretic topology, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 23, Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, R.I., 1975. Expository lectures from the CBMS Regional Conference held at the University of Wyoming, Laramie, Wyo., August 12–16, 1974. MR 0367886, DOI 10.1090/cbms/023
- R. M. Stephenson Jr., Discrete subsets of perfectly normal spaces, Proc. Amer. Math. Soc. 34 (1972), 605–608. MR 296885, DOI 10.1090/S0002-9939-1972-0296885-5
- Franklin D. Tall, On the existence of non-metrizable hereditarily Lindelöf spaces with point-countable bases, Duke Math. J. 41 (1974), 299–304. MR 388339
- Franklin D. Tall, The countable chain condition versus separability—applications of Martin’s axiom, General Topology and Appl. 4 (1974), 315–339. MR 423284, DOI 10.1016/0016-660X(74)90010-5
- Franklin D. Tall, The density topology, Pacific J. Math. 62 (1976), no. 1, 275–284. MR 419709, DOI 10.2140/pjm.1976.62.275 —, First countable spaces with caliber ${\aleph _1}$ may or may not be separable, Set-Theoretic Topology (G. M. Reed, Editor), Academic Press, New York, 1977. —, Some topological applications of a generalized Martin’s Axiom (in preparation). W. A. R. Weiss, Some applications of set theory to topology, Thesis, Univ. of Toronto, Toronto, Canada, 1975.
- H. E. White Jr., Topological spaces in which Blumberg’s theorem holds, Proc. Amer. Math. Soc. 44 (1974), 454–462. MR 341379, DOI 10.1090/S0002-9939-1974-0341379-3
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 139-145
- MSC: Primary 54D20
- DOI: https://doi.org/10.1090/S0002-9939-1977-0514998-1
- MathSciNet review: 0514998