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RECURRENCES FOR THE SUM OF DIVISORS

JOHN A. EWELL

Abstract. The author presents two recursive determinations of the sum of

positive divisors of a given positive integer. Each recurrence is then dis-

cussed with regard to economy of computation, and in this light is com-

pared with the well-known recurrence of Niven and Zuckerman. As far as

methods of proof are concerned, everything is accomplished within the

algebra of formal power series.

For a given positive integer n, o(n) denotes the sum of the positive divisors

of n; symbolically

<K«)-2¿
d\n

Using an argument based essentially on Euler's pentagonal-number identity,

Niven and Zuckerman [2, p. 232] derive the following recursive formula for

Theorem 1. For each positive integer n,

2 (-1)*M« - (3*2 - k)/2) + o(n - (3k2 + k)/2)\
k-0

(1)
= l(-l)J+ln,     ifn = (3j2±j)/2,

[ 0, otherwise,

where the sum extends as far as the arguments are positive.

In this note we derive two new recursive schemes for computing the values

o(n). The identities on which the derivations depend are as follows:

(2) fl (1 - x")(l - *2"-1) = 1+22 (-1)"*"2.
n-l n-1

(3) 5 (1 - x"f= 2 (-l)n(2W + l)x"(n+1)/2.
n-\ n-0

For proofs see [1, pp. 282-285] where both of these identities are derived as

special cases of the celebrated Gauss-Jacobi triple-product identity. To facili-

tate both statement and proof of the first of our two results, we introduce the

following notation. Recall that every positive integer n has a unique repre-
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sentation as n = 2bwO(n) where b(n) is a nonnegative integer and O(n) is

odd. Now define

a(n) = a(n) + a(0(n)).

Note that: owing to the multiplicativity of a, u(n) = 2b(n)+xa(0(n)). We are

now prepared to state our results.

Theorem 2. For each positive integer m,

a(2m - 1) - 2 "(2m - 1 - (2/ - l)2) + 2 2 "(2m - 1 - (2/)2)
/-i /-i

10,      otherwise,

and

w(2m) - 4 2 o-(2w - (2/ - l)2) + 2% <o(2m - (2/)2)

(5)
_ i -2/I2,    i/2m = «2,

10, otherwise,

where in both (4) a«¿/ (5) summation extends as far as the arguments are

positive.

Theorem 3. For each positive integer n,

1(1+1)
¿(-1)(2/+   1)01 B-

(6)

2(-l)'(2/+l)a(«-j-ij

. ,/(/+ 0(2/+1) j(j + 1)
(-ir  -6-'  ,/n = ——-

. 0, otherwise,

where the summation convention is as before.

Proof of Theorem 2. Briefly, set F(x) = 1 + 22 (-1)"*"2. Now take the

logarithmic derivative of identity (2) and multiply the resulting identity by x

to obtain

(i) V      nx"     , £   (2n-l)x2-x xF'(x)

Í,  »-*"     ¿.      1-x2«-' F(x)   ■

We develop the first sum on the left of (7) to obtain

00 „ 00 00 00 00

2 rz—n = 2 «*" 2 xJ" = 22 m*
n=\    l        X n = l j-0 n-1 y=l

= 2 **2« = 2 »(*)**■
/t=i   «i*    *=i
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Development of the second sum yields

»     (2« -   l)*2"-1 °° «
2  —,-ÜZT- * 2 <2« - l)^2-1 2 J***-»

n-l        1        -X n-l 7-0

00 00

= 2 2 (2« - i^2"-»
n-l7-1

= 2 *k 2 d= 2 o(2« - l)*2"-1 + 2 a(0(2w))>.
k-\        </|ft, m=l m=l

¿odd

Thus, identity (7) becomes

00                                    °°                            xF'(x)
2 2 °-(2>w - l)x2m-' +  2 w(2m)x2m-—i-i .

m-l m=l ^(jc)

Now,

f2 2 o(2w - l)*2m-1
I    m-l

F(jc)-2 2 ff(2m- l)x2m-'
m-l

+    2 2 o(2*- 1)JIk -

k-\

/v/222(-
1=1

oo

= 22 <f(2« - l)*2""-1 +  2 x2m~l 2 4a(2/n ~ 1 ~ (2/)2)
m-l m=l /=1

-  2 x2m 2 4a(2/n - (2/ - l)2).

And,

00

2 a(2m)x2m \F(x)=  2 u(2m)x2m

m-l /=1

m-l m=l

+   2"(2^2M   2 2(-i)'-x'2

= 2 u(2m)x2m + 2 x2m 2 2w(2w - (2/)2)
m=l m=l /=!

- 2 x2m~l 2 2w(2/n - 1 - (21 - l)2).
m=l /-l

Finally, in the identity

m-l

2 2 o(2w - \)x2m~x \F(x) +     2 "(2w)x2m \F(x)
n=\

= -xF'(x) = 2 2 (-\)n+l-n2xnl,

n=l
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we equate coefficients of odd powers x2m  ' to obtain recurrence (4) and

equate coefficients of even powers x2m to obtain (5).

Proof of Theorem 3. Here we set G(x) = S(-l)"(2« + l)x"in+X)/2 and

operate on identity (3) to obtain

nxn xG'(x)

or equivalently,

3 y
¿i  1 - x" G(x)

ïj^}G(x)=-\xG>(x).

From the proof of Theorem 2 we know the expansion of the sum on the left

side of the foregoing identity. Hence, we easily find the complete expansions

of both sides and equate coefficients of like powers to arrive at recurrence (6).

Remarks. It is of interest to compare the recurrences of these three

theorems. If, for example, one had in mind adaptation of the recurrences to

machine use, then since the machine immediately determines the binary part

of given n and a(n) = (26(n)+1 - l)a(0(n)), one may assume that the given

number n is odd. And now one has only to compare recurrences (1), (4) and

(6). Then, for an arbitrary choice of "large" n odd, recurrence (1) needs about

2y§ n of the previous values, recurrence (4) needs about V« of them and

recurrence (6) needs about V2n of them. In order to fix ideas let us consider

the not-too-large value of n = 63 and partially compute a (63) by each of the

recurrences.

By recurrence (1),

a(63) = o(62) + a(61) - a(58) - a(56) + o(51) + a(48)

-a(41) - a(37) + a(28) + a(23) - a(12) - a(6).

By recurrence (4),

a(63) = 22 • a(31) + 22 • a(27) + 22 • o(19) + 22 • a(7)

- 2 • a(59) - 2 • a(47) - 2 • o(27).

And, by recurrence (6),

a(63) = 3 • o(62) - 5 • a(60) + 7 • a(57) - 9 • o(53)

+ 11 ■ a(48) - 13 • o(42) + 15 ■ a(35) - 17 • a(27)

+ 19 -o(18) - 21 -o-(8).

Thus, formally speaking, recurrence (1) uses 12 lower values, recurrence (4)

uses 7 (which reduces to 6 since a (27) occurs twice) and recurrence (6) uses

10. Of the three recurrences, (4) is by far the most economical. Recurrence (6)

is better than (1) since computation of the additional coefficients 2/ + 1

involves no difficulty whatever.
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