Spinor genera of unimodular $Z$-lattices in quadratic fields
HTML articles powered by AMS MathViewer
- by A. G. Earnest
- Proc. Amer. Math. Soc. 64 (1977), 189-195
- DOI: https://doi.org/10.1090/S0002-9939-1977-0441863-0
- PDF | Request permission
Abstract:
Let L be a unimodular Z-lattice on a quadratic space V over Q, $\dim V \geqslant 3$, and let $\mathcal {O}$ be the ring of algebraic integers of the quadratic field $E = {\mathbf {Q}}(\sqrt m )$. We explicitly calculate the number of proper spinor genera in the genus of the lattice $L{ \otimes _{\mathbf {Z}}}\mathcal {O}$.References
- A. G. Earnest and J. S. Hsia, Spinor genera under field extensions. I, Acta Arith. 32 (1977), no. 2, 115–128. MR 434950, DOI 10.4064/aa-32-2-115-128
- A. G. Earnest and J. S. Hsia, Spinor genera under field extensions. II. $2$ unramified in the bottom field, Amer. J. Math. 100 (1978), no. 3, 523–538. MR 491488, DOI 10.2307/2373836
- A. G. Earnest and J. S. Hsia, Spinor genera under field extensions. II. $2$ unramified in the bottom field, Amer. J. Math. 100 (1978), no. 3, 523–538. MR 491488, DOI 10.2307/2373836
- J. S. Hsia, Spinor norms of local integral rotations. I, Pacific J. Math. 57 (1975), no. 1, 199–206. MR 374029, DOI 10.2140/pjm.1975.57.199 E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Geest and Portig, Leipzig, 1954. MR 16, 571. O. T. O’Meara, Introduction to quadratic forms, Springer-Verlag, Berlin, 1963. MR 27 #2485.
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 189-195
- MSC: Primary 10C05
- DOI: https://doi.org/10.1090/S0002-9939-1977-0441863-0
- MathSciNet review: 0441863