## Spinor genera of unimodular $Z$-lattices in quadratic fields

HTML articles powered by AMS MathViewer

- by A. G. Earnest PDF
- Proc. Amer. Math. Soc.
**64**(1977), 189-195 Request permission

## Abstract:

Let*L*be a unimodular

**Z**-lattice on a quadratic space

*V*over

**Q**, $\dim V \geqslant 3$, and let $\mathcal {O}$ be the ring of algebraic integers of the quadratic field $E = {\mathbf {Q}}(\sqrt m )$. We explicitly calculate the number of proper spinor genera in the genus of the lattice $L{ \otimes _{\mathbf {Z}}}\mathcal {O}$.

## References

- A. G. Earnest and J. S. Hsia,
*Spinor genera under field extensions. I*, Acta Arith.**32**(1977), no. 2, 115–128. MR**434950**, DOI 10.4064/aa-32-2-115-128 - A. G. Earnest and J. S. Hsia,
*Spinor genera under field extensions. II. $2$ unramified in the bottom field*, Amer. J. Math.**100**(1978), no. 3, 523–538. MR**491488**, DOI 10.2307/2373836 - A. G. Earnest and J. S. Hsia,
*Spinor genera under field extensions. II. $2$ unramified in the bottom field*, Amer. J. Math.**100**(1978), no. 3, 523–538. MR**491488**, DOI 10.2307/2373836 - J. S. Hsia,
*Spinor norms of local integral rotations. I*, Pacific J. Math.**57**(1975), no. 1, 199–206. MR**374029**, DOI 10.2140/pjm.1975.57.199
E. Hecke,

*Vorlesungen über die Theorie der algebraischen Zahlen*, Geest and Portig, Leipzig, 1954. MR

**16**, 571. O. T. O’Meara,

*Introduction to quadratic forms*, Springer-Verlag, Berlin, 1963. MR

**27**#2485.

## Additional Information

- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**64**(1977), 189-195 - MSC: Primary 10C05
- DOI: https://doi.org/10.1090/S0002-9939-1977-0441863-0
- MathSciNet review: 0441863