A complete Kähler metric of positive curvature on $C^{n}$
HTML articles powered by AMS MathViewer
- by Paul F. Klembeck
- Proc. Amer. Math. Soc. 64 (1977), 313-316
- DOI: https://doi.org/10.1090/S0002-9939-1977-0442290-2
- PDF | Request permission
Abstract:
A complete Kähler metric of positive curvature on ${{\mathbf {C}}^n}$ is constructed and its importance is discussed.References
- Ch. Blanc and F. Fiala, Le type d’une surface et sa courbure totale, Comment. Math. Helv. 14 (1942), 230–233 (French). MR 6857, DOI 10.1007/BF02565620
- Shiing-shen Chern, An elementary proof of the existence of isothermal parameters on a surface, Proc. Amer. Math. Soc. 6 (1955), 771–782. MR 74856, DOI 10.1090/S0002-9939-1955-0074856-1
- R. E. Greene and H. Wu, A theorem in complex geometric function theory, Value distribution theory (Proc. Tulane Univ. Program, Tulane Univ., New Orleans, La., 1972-1973) Dekker, New York, 1974, pp. 145–167. MR 0352534
- R. E. Greene and H. Wu, Analysis on noncompact Kähler manifolds, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 2, Williams Coll., Williamstown, Mass., 1975) Amer. Math. Soc., Providence, R.I., 1977, pp. 69–100. MR 0460699
- Detlef Gromoll and Wolfgang Meyer, On complete open manifolds of positive curvature, Ann. of Math. (2) 90 (1969), 75–90. MR 247590, DOI 10.2307/1970682
- Shing Tung Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228. MR 431040, DOI 10.1002/cpa.3160280203
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 313-316
- MSC: Primary 32F99; Secondary 53C55
- DOI: https://doi.org/10.1090/S0002-9939-1977-0442290-2
- MathSciNet review: 0442290