ORIENTATION-REVERSING PERIODIC PL MAPS
OF LENS SPACES
PAIK KEE KIM

Abstract. We complete the classification of all orientation-reversing PL
maps of period $4k$ ($k > 1$) on lens spaces. All \mathbb{Z}_4-actions on the projective
3-space are also classified.

1. Introduction. The 3-sphere and the projective 3-space are the only
3-dimensional lens spaces $L(p, q)$ which admit orientation-reversing PL maps
of period $n > 4$ [4]. In [4] all orientation-reversing PL maps of period $4k$ on
the 3-sphere S^3 are classified for all k. In this paper we show:

Theorem A. The projective 3-space \mathbb{P}^3 admits a unique orientation-reversing
PL map of period $4k$ for each k, up to conjugation.

All orientation-reversing PL involutions of lens spaces [6], [8] and all PL
involutions of \mathbb{P}^3 [2], [6] are known. As consequences of Theorem A and [3],
we have

Theorem B. The projective 3-space \mathbb{P}^3 admits exactly four distinct \mathbb{Z}_4-actions
(PL), up to conjugation.

The cyclic group generated by h shall be denoted by $\langle h \rangle$. Two actions of
$\langle h \rangle$ and $\langle h' \rangle$ on a space M are said to be conjugate if there exists a
homeomorphism t of M such that $\langle tht^{-1} \rangle = \langle h' \rangle$. We shall denote the
fixed-point set of h by $\text{Fix}(h)$.

We consider S^3 as a subset of \mathbb{C}^2, defined by $\{(z_1, z_2) \in \mathbb{C}^2 | z_1 \bar{z}_1 + z_2 \bar{z}_2 = 1\}$. Define an orientation-reversing homeomorphism λ' of S^3 by $\lambda'(z_1, z_2) = (\omega z_1, \omega z_2)$, where $\omega = e^{2\pi i/n}$ and n is even. Since λ' commutes with the
antipodal map of S^3, there exists an obvious orientation-reversing map λ of
period n on \mathbb{P}^3 induced by λ'.

Remark. Let f be an orientation-preserving map of period n on S^3 and
$\text{Fix}(f) \neq \emptyset$. Then $\text{Fix}(f)$ is a simple closed curve. A well-known conjecture,
due to P. A. Smith, asserts that $\text{Fix}(f)$ is unknotted for all n (see [1]). It
follows from a result of F. Waldhausen [12] that the conjecture is true for
even period n. Let h be an orientation-reversing map of period $n > 2$ on \mathbb{P}^3.
Then it follows from the Lefschetz fixed-point theorem that $\text{Fix}(h) \neq \emptyset$. Note
that h^2 is orientation-preserving and n is even. Assuming the Smith conjecture, one can prove that $\pi_1(P^3 - \text{Fix}(h^2))$ is abelian. The following theorem classifies all orientation-reversing periodic maps of P^3 modulo the Smith conjecture.

Theorem C. Let h be an orientation-reversing PL map of the projective 3-space P^3 with period $n \geq 2$. If $\pi_1(P^3 - \text{Fix}(h^2))$ is abelian, then h is conjugate to λ.

Let h be a periodic map of a space M. Then there exists a homeomorphism q of $M/\langle h^k \rangle$, uniquely determined by h, such that $qg = gh$, where $g: M \to M/\langle h^k \rangle$ is the orbit map. We call q the map of $M/\langle h^k \rangle$ induced by h. We shall denote the closed unit interval and the n-sphere by I and S^n, respectively. In this paper all spaces and maps will be in the PL category.

2. **Equivariant product structure.** Let A be the annulus $S^1 \times I$ and let h be a free involution on $A \times I$ such that $h(A \times \{i\}) = A \times \{i\}$ ($i = 0, 1$). The following lemma is essentially a special case of a result of Waldhausen [11].

Lemma 2.1. There exists an isotopy of $A \times I$, keeping $A \times \{i\}$ invariant, after which a product structure on $A \times I$ and an involution g on A are obtained so that $h(x, t) = (g(x), t)$ for $(x, t) \in A \times I$. The isotopy can be chosen constant on $A \times \{0\}$.

Suppose that $A \times I$ is a regular neighborhood of an invariant simple closed curve J, or equivalently $\pi_1(A \times I - J) = \mathbb{Z} \oplus \mathbb{Z}$. The following lemma further claims that the isotopy in Lemma 2.1 can be chosen, after which $J = S^1 \times \{1/2\} \times \{1/2\}$.

Lemma 2.2. There exists an isotopy of $A \times I$, keeping $A \times \{i\}$ invariant, after which a product structure on $A \times I$ and an involution g on A are obtained so that $h(x, t) = (g(x), t)$ for $(x, t) \in A \times I$ and $J = S^1 \times \{1/2\} \times \{1/2\}$.

Proof. We will show that there exists an invariant annulus H properly embedded in $A \times I$ such that ∂H meets each $S^1 \times \{i\} \times (0, 1)$ ($i = 1, 0$) in a simple closed curve and $J \subset \text{Int} H$. Then H separates $A \times I$ into two invariant components, each of which is homeomorphic to $S^1 \times I \times I$. Define a product structure on each component $S^1 \times I \times I$ as in Lemma 2.1. We may assume that $J = S^1 \times \{1/2\} \subset S^1 \times I \approx H$. Now repairing the cut along H defines the required product structure of $A \times I$.

Let $M = A \times I/\langle h \rangle$ and $g: A \times I \to M$ be the orbit map. Then M is a homeomorphic to $c \times I$, where c is either an annulus or a möbius band. It is not difficult to see that M is a regular neighborhood of $g(J)$. Therefore, there exists a properly embedded surface H' in M such that each component of $\partial M - (g(A \times \{0, 1\}))$ meets H' in a simple closed curve, where H' is a regular neighborhood of $g(J)$ in H' (see Lemma 2.1). Then $H = g^{-1}(H')$ is an annulus as desired.
3. Proof of Theorem A.

(3.1) Consider an orientation-reversing map h of period $4k$ on P^3. It follows from the Lefschetz fixed-point theorem that $\text{Fix}(h) \neq \emptyset$. Since h^{2k} is an involution of P^3, $\text{Fix}(h^{2k})$ is a disjoint union of two simple closed curves, say F and F' (see [2]). Let $N = P^3/\langle h^{2k} \rangle$ and $d: P^3 \to N$ be the orbit map. Let $L = d(F)$ and $L' = d(F')$. Then N is homeomorphic to S^3 and

$$\pi_1(N - L - L') = \mathbb{Z} \oplus \mathbb{Z}$$

(see [2]). Let f be the map of N induced by h. Since f is an orientation-reversing map of N (of period $2k$) and $d(\text{Fix}(h)) \subset \text{Fix}(f)$, $\text{Fix}(h)$ consists of two points, say x and \bar{x}. Let $y = d(x)$ and $\bar{y} = d(\bar{x})$. We may assume that \{x, \bar{x}\} \subset F'. Then $\text{Fix}(f) = \{y, \bar{y}\} \subset L'$. Notice that if $k > 1$, $\text{Fix}(f^{2r})$ ($1 < r < k$) is a simple closed curve. Hence $\text{Fix}(h^{2r})$ is a simple closed curve, and it is easy to see that $\text{Fix}(h^{2r}) = F'$ for each $r, r \not\equiv 0$ (mod k). Let $M = N/\langle h^{2r} \rangle$, $g: N \to M$ be the orbit map (of course, $M = N$ if $k = 1$). Then M is again homeomorphic to S^3 (see [3]). Let T be the map of M induced by f. Then T is an orientation-reversing involution. Let $J = g(L), J' = g(L'), \bar{z} = g(\bar{y}),$ and $z = g(y)$. Notice that $\text{Fix}(T) = \{z, \bar{z}\} \subset J'$ and T interchanges the two open arcs $J' - \{z, \bar{z}\}$. Since $\pi_1(N - L - L') = \mathbb{Z} \oplus \mathbb{Z}$, it can be seen that $\pi_1(M - J - J') = \mathbb{Z} \oplus \mathbb{Z}$ (see [3]).

(3.2) A product structure will be defined on the complement of a regular neighborhood of J' in M. Take small invariant balls B and \bar{B} in $M - J$, containing z and \bar{z}, respectively, such that $B \cap \bar{B} = \emptyset$. Again take a small invariant regular neighborhood of $\partial(J - B - \bar{B})$ in $\partial(M - B - \bar{B}) - J$ so that it has two components, say K and K'. Let $\tilde{M} = B \cup \bar{B} \cup K \cup K'$. Then \tilde{M} is a regular neighborhood of J'. Let $\overline{M} = \partial(M - \tilde{M})$. Since

$$\pi_1(M - J - J') = \mathbb{Z} \oplus \mathbb{Z},$$

it follows from a result of J. Stallings [10] that \overline{M} is homeomorphic to a solid torus $D^2 \times S^1$ and it is also an invariant regular neighborhood of J. Parametrize \overline{M} in terms of $A \times I$ ($A = S^1 \times I$) such that

$$\partial A \times I \approx \partial(\partial(K \cup K') - B - \bar{B}), \quad A \times \{0\} \approx \partial B - k - K'$$

and

$$A \times \{1\} \approx \partial B - K - K'.$$

(3.3) Let h_i ($i = 1, 2$) be an orientation-reversing map of period $4k$ on P^3. In connection with h_i, a symbol such as q_i shall be used to represent the same object as q where q is a symbol in (3.1) and (3.2). We will define an equivalence ι of M_1 onto M_2 such that $T_2 \iota = \iota T_1$, $\iota(J_i) = J_2$, and $\iota(J'_i) = J'_2$. Since J is isotopic to $S^1 \times \{1/2\} \times \{1/2\}$ in $A \times I$ (after parametrizing \overline{M}), it follows from Lemma 2.2 that there exists an equivalence ι between $T_1|\overline{M}_1$ and $T_2|\overline{M}_2$ such that $\iota(J_i) = J_2$, $\iota(\partial B_i - K_i - K'_i) \equiv \partial B_2 - K_2 - K'_2$, and $\iota(\partial B_i - K_i - K'_i) \equiv \partial B_2 - K_2 - K'_2$. Since each T_i interchanges K_i and K'_i, and $T_i|B_i (T_i|B_i \text{ resp.})$ is essentially the cone over $T_i|\partial B_i (T_i|\partial B_i \text{ resp.})$ (see
one can extend \(\tilde{t} \) to an equivalence \(t \) between \(T_1 \) and \(T_2 \) such that
\[
\tilde{t}(J_1) = J_2.
\]

(3.4) Since \(\pi_1(N_i - L_i) = Z \) and \(\text{Fix}(f_i^{2r}) = L_i, 1 < r < k \), there exists a lifting equivalence \(s \) between \(f_1 \) and \(f_2 \) such that \(g_2^{-1} = g_2 \) (see the following diagram). Let \(\tilde{N}_i = g_i^{-1}(M_i) \) and \(\tilde{P}_i = d_i^{-1}(\tilde{N}_i) \). Then \(\tilde{N}_i \) and \(\tilde{P}_i \) are invariant regular neighborhoods of \(L_i \) and \(\tilde{F}_i \) which are homeomorphic to \(D^2 \times S^1 \), respectively. Our plan is to find a lifting \(r \) of \(P^3 \) such that the following diagram commutes.

\[
\begin{array}{ccc}
(P^3, \tilde{P}_1, F_1) & \xrightarrow{d_1} & (N_1, \tilde{N}_1, L_1) \\
\downarrow r & & \downarrow s \\
(P^3, \tilde{P}_2, F_2) & \xrightarrow{d_2} & (N_2, \tilde{N}_2, L_2) \\
\end{array}
\]

To do this, it is enough to show that \((s'D') \# (\pi_1(\tilde{P}_i)) = d_i^{-1} \# (\pi_1(\tilde{P}_i)) \), where \(s' : \partial \tilde{N}_1 \to \partial \tilde{N}_2 \) and \(d' : \partial \tilde{P}_i \to \partial \tilde{N}_i \) are the maps such that \(s' = s|_{\partial \tilde{N}_i} \) and \(d' = d_i|_{\partial \tilde{P}_i} \). In (3.5) and (3.6) we select some special generators of \(\pi_1(\partial \tilde{P}_i) \). In (3.7) we conclude the proof.

(3.5) Let \(q_i \) be the orbit map of \(T_i \) and let \(Q_i = q_i(M_i) \). Since \(t \) is an equivalence between \(T_1 \) and \(T_2 \), there exists a homeomorphism \(\hat{t} \) between the orbit spaces of \(T_1 \) and \(T_2 \) such that \(\hat{t} q_i = q_2 t \). Let \(q_i(J_i) = J_2 \). It follows from Lemma 2.2 that \(Q_i \) is a nonorientable disk bundle over \(J_i \) (see also (3.2)). Therefore one can find an annulus \(A_i \) in \(Q_i \) such that \(\text{Int}(A_i) \subset \text{Int}(Q_i) \) and \(\partial A_i \) consists of \(J_i \) and a simple closed curve \(c_i \) on \(\partial Q_i \). Let \(A_2 = t(A_i) \). Then \(A_2 \) is an annulus in \(Q_2 \) such that \(\text{Int}(A_2) \subset \text{Int}(Q_2) \) and \(\partial A_2 \) consists of \(J_2 \) and a simple closed curve \(c_2 \) on \(\partial Q_2 \).

(3.6) Let \(v_i = q_i \cdot (g_i|\tilde{N}_i) \). Then, since \(v_i : \tilde{N}_i \to Q_i \) is the covering projection generated by \(f_i|\tilde{N}_i \), we see that \(v_i^{-1} \) is an annulus in \(\tilde{N}_i \) such that \(\partial (v_i^{-1}(A_i)) \) consists of \(L_i \) and a simple closed curve \(v_i^{-1}(c_i) \) on \(\partial \tilde{N}_i \), and \(\text{Int}(v_i^{-1}(A_i)) \subset \text{Int}(\tilde{N}_i) \) (recall that \(L_i \) is invariant under \(f_i \)). On the other hand, there exists a properly embedded disk \(D_i \) in \(\tilde{P}_i \) such that \(D_i \cap h_i^{2r}(D_i) = \emptyset \) \((1 < r < k)\), \(h_i^{2k}(D_i) = D_i \), and \(\partial D_i \) does not bound a disk in \(\partial \tilde{P}_i \) (letting \(h_i = h_i|\tilde{P}_i \), then \(h_i^{2k} \) is the only nontrivial element of \(\langle h_i \rangle \) with nonempty fixed point set, and one may use the argument in the proof of Lemma 2.8 of [3]). Let \(\alpha_i \) be the element of \(\pi_1(\partial \tilde{P}_i) \) represented by the path \(\partial D_i \) and \(\beta_i \) be another element of \(\pi_1(\partial \tilde{P}_i) \) such that \(\alpha_i \) and \(\beta_i \) generate \(\pi_1(\partial \tilde{P}_i) \). Let \(\gamma_i \) and \(\xi_i \) be the elements of \(\pi_1(\partial \tilde{N}_i) \) represented by \(d_i(\partial D_i) \) and \(v_i^{-1}(c_i) \). Since \(d_i(\partial D_i) \) bounds a disk in \(\tilde{N}_i \) and \(v_i^{-1}(c_i) \) is homotopic to the center circle of \(N_i \) \((\approx D^2 \times S^1)\), we see that \(\gamma_i \) and \(\xi_i \) generate \(\pi_1(\partial \tilde{N}_i) \). Since \(v_i^{-1}(c_i) \) is connected, where \(v_i = v_i|\partial D_i \). Suppose that it were disconnected. Recall that \(d_i' = d_i|\partial \tilde{P}_i \). Since \(d_i' \) is a double covering projection generated by \(h_i^{2k}|\partial \tilde{P}_i \) and \(v_i^{-1}(c_i) \) is connected, we see that \(v_i^{-1}(c_i) \)
has two components, say \(a_i, b_i \), and, hence, \(h^{2k}(a_i) = b_i \). Since \(\tilde{\omega} \partial \tilde{P}_i \) is a covering projection generated by \(h_i \partial \tilde{P}_i \), \(a_i \cup b_i \) is invariant under \(h_i \) (and \(h^k \)), and either \(h_i(a_i) = b_i \) or \(h_i(a_i) = a_i \) occurs. Therefore we see that \(h^{2k}(a_i) = a_i \), which is a contradiction to the fact that \(h^{2k}(a_i) = b_i \). Hence \(\tilde{\omega}^{-1}(c_i) \) is connected. This implies that there is no element \(\phi_i \) of \(\pi_1(\partial \tilde{P}_i) \) such that
\[d^i_\#(\phi_i) = \xi_i. \]
We may assume (by the choice of \(D_i \) in \(P_i \)) that
\[d^i_\#(\tau_i) = \gamma_2 \]
and
\[d^i_\#(\beta_i) = \gamma^m \xi_i \]
for some \(m_i \). Note that \(m_i \) must be odd (otherwise, \(\xi_i \in d^i_\#(\pi_1(\partial \tilde{P}_i)) \)). Therefore, \(d^i_\#(\pi_i(\partial \tilde{P}_i)) \) is generated by \(\gamma_2^2 \) and \(\gamma_2 \xi_i \). Since
\[s^i_\#(\gamma_i^2) = \gamma_2^2 \]
and
\[s^i_\#(\gamma_2 \xi_i) = \gamma_2 \xi_2 \]
we have a lifting \(\tilde{r} \) of \(P^3 - F_1 - F_2 \) to \(P^3 - F_1 - F_2 \). One may extend \(\tilde{r} \) to a homeomorphism \(r \) of \(P^3 \) such that \(d_2 r = s_1 d_1 \). This completes the proof.

4. Proof of Theorem C.

(4.1) Consider an orientation-reversing map \(h \) of period \(n \) on \(P^3 \). In §3 we have proved the case where \(n = 4k \). Now assume that \(n = 2k, k \) odd \(> 1 \).

Since \(h^k \) is an involution on \(P^3 \), \(\text{Fix}(h^k) \) is a projective plane \(P \) plus an isolated point \(x \) (see [6]). Since the period of \(h^2 \) is \(k \) (odd), \(\text{Fix}(h^2) \) (1 < \(r < k \)) is a simple closed curve (see [3]). Let \(F = \text{Fix}(h^2) \). Let \(\xi : S^3 \to P^3 \) be the natural projection. Since \(\pi_1(P^3) = Z_2 \), it can be seen that \(\xi^{-1}(F) \) is a simple closed curve [3], [7]. Since \(\pi_1(P^3 - F) \) is abelian, \(\pi_1(S^3 - \xi^{-1}(F)) = Z \) (see [9]). Therefore, \(\pi_1(P^3 - F) = Z \) (for a proof, see [7]).

(4.2) Since \(\pi_1(P^3 - F) = Z \) and \(k \) is odd, the orbit space \(M = P^3/\langle h^2 \rangle \) is homeomorphic to \(P^3 \) (see [3]). Since \(P \cup \{ x \} \) is invariant under \(h \), we see that \(h(x) = x \). Since \(\text{Fix}(h) \subset F \), \(\text{Fix}(h) \) consists of \(x \) and a point \(y \) of \(F \). Since \(h^2 \) and \(h^k \) generate the group \(\langle h \rangle \), \(F \cap P = \{ y \} \). Furthermore, since \(h \) interchanges the sides of \(P \) in a small neighborhood of \(y \), \(F \) meets \(P \) at \(y \) locally piercingly. Let \(g : P^3 \to M \) be the orbit map and let \(J = g(F) \). Since \(\pi_1(P^3 - F) = Z \), it can be seen that \(\pi_1(M - J) = Z \) (see [3]). Let \(T \) be the involution of \(M \) induced by \(h \). Since \(gh^k = Tg \), we see that \(\text{Fix}(i) = g(P) \cup g(x) \). Let \(\tilde{P} = g(P) \) and \(z = g(x) \). Then \(\tilde{P} \) is a projective plane and \(T \) interchanges the two open arcs of \(J - \{ z, g(y) \} \). Note that \(\tilde{P} \) is one-sided in \(M \).

(4.3) Triangulate \(M \) so that \(\text{Fix}(T) \) and \(J \) are subcomplexes, and \(T \) becomes simplicial. Let \(U \) be the simplicial neighborhood of \(\tilde{P} \) in \(M \). Let \(B \) be the closed star of \(z \) in \(M \). We may assume that \(B \cap U = \emptyset \). Note that \(T|B \) is essentially a cone over \(T|\partial B \) (see [8]). Consider the double covering \(\gamma : M' \to M \) obtained from \(M \) by cutting along \(\tilde{P} \). Since \(\partial U \approx S^2 \), we see that \(cl(M - U) \) is homeomorphic to a 3-cell, and \(M' \) is a 3-sphere \(S^3 \). Since \(\pi_1(M - J) = Z \), we see that \(\pi_1(M' - J') = Z \) where \(J' = \gamma^{-1}(J) \). Therefore \(J' \) is unknotted in \(M' \) (see [9]).

(4.4) Now consider the two orientation-reversing maps \(h_1 \) and \(h_2 \) of \(P^3 \) with period \(2k, k \) odd \(> 1 \). As in (3.3), we use symbols \(q_i \) in connection with \(h_i \) (\(i = 1, 2 \)) whenever a symbol \(q \) has appeared in (4.2). Let
\[Q_i = cl(M_i - U_i - B_i). \]
Let K_i be the simplicial neighborhood of $\text{cl}(J_i - U_i - B_i)$ in Q_i such that K_i has two components. Since $\gamma_i^{-1}(U_i)$ is a product neighborhood $S_i \times [-1, 1]$ of $\gamma_i^{-1}(P_i) \approx S^2$ such that $S_i \times (0) = \gamma_i^{-1}(P_i)$, each component of $\text{cl}(M'_i - \gamma_i^{-1}(U_i \cup B_i))$ is homeomorphic to $S^2 \times I$ and it is exactly a copy of Q_i. Therefore, since J_i is unknotted in M_i, a product structure on $\text{cl}(Q_i - K_i)$ can be defined in terms of $A \times I (A = S^1 \times I)$ such that $\text{cl}(\partial B_i - K_i) \approx A \times \{0\}$, $\text{cl}(\partial U_i - K_i) \approx A \times \{1\}$, and $\text{cl}(\partial K_i - B_i - U_i) \approx S^1 \times \{0, 1\} \times I$. Furthermore the product structure can be chosen so that there exists an involution f on A such that $T_i(x, t) = (f(x), t)$ for $(x, t) \in A \times I$ (see §2). Notice that T_i interchanges the two components of K_i. Therefore, the orbit space of $T_i|\text{cl}(M_i - B_i - U_i)$ is homeomorphic to $P^2 \times I$ (see also [8]) and, letting $G_i = M_i/\langle T_i \rangle$ and $k_i: M_i \to G_i$ be the orbit map, there exists a homeomorphism α of G_1 to G_2 such that $(ak_1)(z_1) = k_2(z_2)$, $(ak_1)(J_1) = k_2(J_2)$, and $(ak_1)(P_1) = k_2(P_2)$. Hence there exists an equivalence β between T_1 and T_2 such that $\beta(J_1) = J_2$. Since $\pi_1(M_i - J_i) = Z$, one may conclude by the lifting theorem that h_1 and h_2 are conjugate in the usual way.

References

8. G. R. Livesay, Involutions with two fixed points on the three-sphere, Ann. of Math (2) 78 (1963), 582–593. MR 27 #5257.
11. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 37 #7146.

Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881

Current address: Department of Mathematics, University of Kansas, Lawrence, Kansas 66045