Convex solutions of a Schröder equation in several variables
HTML articles powered by AMS MathViewer
- by Fred M. Hoppe
- Proc. Amer. Math. Soc. 64 (1977), 326-330
- DOI: https://doi.org/10.1090/S0002-9939-1977-0443113-8
- PDF | Request permission
Abstract:
A nonprobabilistic proof is given for the existence of the Yaglom conditional limit distribution for the subcritical multitype Galton-Watson process by using a uniqueness theorem for convex solutions of the multidimensional Schröder functional equation.References
- R. Bojanić and E. Seneta, Slowly varying functions and asymptotic relations, J. Math. Anal. Appl. 34 (1971), 302–315. MR 274676, DOI 10.1016/0022-247X(71)90114-4
- C. R. Heathcote, E. Seneta, and D. Vere-Jones, A refinement of two theorems in the theory of branching processes, Teor. Verojatnost. i Primenen. 12 (1967), 341–346 (English, with Russian summary). MR 0217889
- Fred Hoppe, Stationary measures for multitype branching processes, J. Appl. Probability 12 (1975), 219–227. MR 373043, DOI 10.1017/s0021900200047902 —(1975b), Functional equations with applications to multitype Gallon-Watson branching processes, Doctoral Dissertation, Princeton Univ., Princeton, N.J.
- Fred M. Hoppe, Representations of invariant measures on multitype Galton-Watson processes, Ann. Probability 5 (1977), no. 2, 291–297. MR 431405, DOI 10.1214/aop/1176995854
- Fred M. Hoppe, The critical Bienaymé-Galton-Watson process, Stochastic Process. Appl. 5 (1977), no. 1, 57–66. MR 426185, DOI 10.1016/0304-4149(77)90050-3
- A. Joffe and F. Spitzer, On multitype branching processes with $\rho \leq 1$, J. Math. Anal. Appl. 19 (1967), 409–430. MR 212895, DOI 10.1016/0022-247X(67)90001-7
- Marek Kuczma, Note on Schröder’s functional equation, J. Austral. Math. Soc. 4 (1964), 149–151. MR 0165266, DOI 10.1017/S1446788700023351
- E. Seneta, Functional equations and the Galton-Watson process, Advances in Appl. Probability 1 (1969), 1–42. MR 248917, DOI 10.2307/1426407
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 326-330
- MSC: Primary 60J80
- DOI: https://doi.org/10.1090/S0002-9939-1977-0443113-8
- MathSciNet review: 0443113