The domain covered by a typically-real function
HTML articles powered by AMS MathViewer
- by A. W. Goodman
- Proc. Amer. Math. Soc. 64 (1977), 233-237
- DOI: https://doi.org/10.1090/S0002-9939-1977-0444956-7
- PDF | Request permission
Abstract:
We find the largest possible domain that is covered by $f(E)$ for every typically-real function $f(z)$. In the process we obtain a set of universal typically-real functions.References
- D. A. Brannan and W. E. Kirwan, A covering theorem for typically real functions, Glasgow Math. J. 10 (1969), 153–155. MR 254222, DOI 10.1017/S0017089500000719
- A. W. Goodman and E. B. Saff, On univalent functions convex in one direction, Proc. Amer. Math. Soc. 73 (1979), no. 2, 183–187. MR 516461, DOI 10.1090/S0002-9939-1979-0516461-2
- M. T. McGregor, On three classes of univalent functions with real coefficients, J. London Math. Soc. 39 (1964), 43–50. MR 162931, DOI 10.1112/jlms/s1-39.1.43
- M. S. Robertson, On the coefficients of a typically-real function, Bull. Amer. Math. Soc. 41 (1935), no. 8, 565–572. MR 1563142, DOI 10.1090/S0002-9904-1935-06147-6
- Werner Rogosinski, Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Z. 35 (1932), no. 1, 93–121 (German). MR 1545292, DOI 10.1007/BF01186552
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 233-237
- MSC: Primary 30A76
- DOI: https://doi.org/10.1090/S0002-9939-1977-0444956-7
- MathSciNet review: 0444956