Isoperimetric inequalities involving heat flow under linear radiation conditions
HTML articles powered by AMS MathViewer
- by Andrew Acker
- Proc. Amer. Math. Soc. 64 (1977), 265-271
- DOI: https://doi.org/10.1090/S0002-9939-1977-0445122-1
- PDF | Request permission
Abstract:
Under the assumption that a constant linear radiation condition holds on each boundary component, we show that the annulus and the strip are heat-flow minimizing with respect to area-preserving variations in one (for the annulus: the outer) boundary component.References
- Andrew Acker, Heat flow inequalities with applications to heat flow optimization problems, SIAM J. Math. Anal. 8 (1977), no. 4, 604–618. MR 473960, DOI 10.1137/0508048
- T. Carleman, Über ein Minimalproblem der mathematischen Physik, Math. Z. 1 (1918), no. 2-3, 208–212 (German). MR 1544292, DOI 10.1007/BF01203612
- G. M. Golusin, Geometrische Funktionentheorie, Hochschulbücher für Mathematik, Band 31, VEB Deutscher Verlag der Wissenschaften, Berlin, 1957 (German). MR 0089896
- J. Horn, Partielle Differentialgleichungen, Walter de Gruyter & Co., Berlin, 1949 (German). 4th ed. MR 0037983 N. I. Mushelišvili, Singular integral equations, Noordhoff, Groningen, 1953.
- W. Pogorzelski, Integral equations and their applications. Vol. I, International Series of Monographs in Pure and Applied Mathematics, Vol. 88, Pergamon Press, Oxford-New York-Frankfurt; PWN—Polish Scientific Publishers, Warsaw, 1966. Translated from the Polish by Jacques J. Schorr-Con, A. Kacner and Z. Olesiak. MR 0201934
- G. Szegö, Über einige Extremalaufgaben der Potentialtheorie, Math. Z. 31 (1930), no. 1, 583–593 (German). MR 1545137, DOI 10.1007/BF01246436
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 265-271
- MSC: Primary 35J99; Secondary 49H05
- DOI: https://doi.org/10.1090/S0002-9939-1977-0445122-1
- MathSciNet review: 0445122