A problem on Noetherian local rings of characteristic $p$
HTML articles powered by AMS MathViewer
- by Shiro Goto
- Proc. Amer. Math. Soc. 64 (1977), 199-205
- DOI: https://doi.org/10.1090/S0002-9939-1977-0447212-6
- PDF | Request permission
Abstract:
Let (A, m, k) be a one-dimensional Noetherian local ring of characteristic p ($p > 0$, a prime number) and assume that the Frobenius endomorphism F of A is finite. Further assume that the field k is algebraically closed and that it is contained in A. Let B denote A when it is regarded as an A-algebra by F. Then, if $\operatorname {Hom}_A(B,A) \cong B$ as B-modules, A is a Macaulay local ring and $r(A) \equiv \dim _k\operatorname {Ext}_A^1(k,A) \leqslant \max \{ \sharp {\text {Ass}}\hat A - 1,1\}$ where  denotes the m-adic completion of A. Thus, in case $\sharp {\text {Ass}}{\mkern 1mu} \hat A \leqslant 2,A$ is a Gorenstein local ring if and only if $\operatorname {Hom}_A(B,A) \cong B$ as B-modules. If $\sharp {\text {Ass}}\hat A \geqslant 3$ this assertion is not true and the counterexamples are given.References
- Jean Dieudonné, Lie groups and Lie hyperalgebras over a field of characteristic $p>0$. II, Amer. J. Math. 77 (1955), 218–244. MR 67872, DOI 10.2307/2372528
- Robert Fossum, Hans-Bjørn Foxby, Phillip Griffith, and Idun Reiten, Minimal injective resolutions with applications to dualizing modules and Gorenstein modules, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 193–215. MR 396529, DOI 10.1007/BF02684302
- Shiro Goto, Note on the existence of Gorenstein modules, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 12 (1973), 33–35. MR 332773
- Robin Hartshorne, Local cohomology, Lecture Notes in Mathematics, No. 41, Springer-Verlag, Berlin-New York, 1967. A seminar given by A. Grothendieck, Harvard University, Fall, 1961. MR 0224620, DOI 10.1007/BFb0073971
- Jürgen Herzog, Ringe der Charakteristik $p$ und Frobeniusfunktoren, Math. Z. 140 (1974), 67–78 (German). MR 352081, DOI 10.1007/BF01218647
- H. Hosaka and T. Ishikawa, On Eakin-Nagata’s theorem, J. Math. Kyoto Univ. 13 (1973), 413–416. MR 332877, DOI 10.1215/kjm/1250523317
- Jürgen Herzog and Ernst Kunz (eds.), Der kanonische Modul eines Cohen-Macaulay-Rings, Lecture Notes in Mathematics, Vol. 238, Springer-Verlag, Berlin-New York, 1971. Seminar über die lokale Kohomologietheorie von Grothendieck, Universität Regensburg, Wintersemester 1970/1971. MR 0412177
- Robin Hartshorne and Robert Speiser, Local cohomological dimension in characteristic $p$, Ann. of Math. (2) 105 (1977), no. 1, 45–79. MR 441962, DOI 10.2307/1971025
- Idun Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417–420. MR 296067, DOI 10.1090/S0002-9939-1972-0296067-7
- R. Y. Sharp, On Gorenstein modules over a complete Cohen-Macaulay local ring, Quart. J. Math. Oxford Ser. (2) 22 (1971), 425–434. MR 289504, DOI 10.1093/qmath/22.3.425
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 199-205
- MSC: Primary 13E05; Secondary 13H10
- DOI: https://doi.org/10.1090/S0002-9939-1977-0447212-6
- MathSciNet review: 0447212