A NOTE ON GOOD REDUCTION OF SIMPLE ABELIAN VARIETIES

C. ADIMOOLAM

Abstract. In this note it is shown that the reduction of a simple abelian variety of dimension > 2, defined over an algebraic number field, at any finite good prime need not be simple. We give an example of a two-dimensional simple abelian variety defined over an algebraic number field whose reduction at any finite prime is isogenous either to a product of ordinary elliptic curves or to a product of supersingular elliptic curves.

It is well known [7] that an abelian variety A defined over an algebraic number field K has good reduction almost everywhere. In other words, if O is the ring of integers in K, Σ the set of all finite primes of K, and S a finite subset of Σ, then for every prime p in $\Sigma - S$, there exists an abelian scheme X over O_p such that $X \times_{O_p} K = A$. Serre and Tate [6] have also proved that if A has sufficiently many complex multiplications, then it has potentially good reduction everywhere. It is clear that if the reduction \tilde{A} of an abelian variety A is simple, then A itself is simple, because $\text{End}_0(A) \subseteq \text{End}_0(\tilde{A})$ and the latter is a division algebra over \mathbb{Q}. One can ask whether the converse is true. More precisely, if A is simple, then is \tilde{A} also simple? In this note we shall see that this need not be the case.

Notations and terminology. We employ the following notation:
- \mathbb{Z} = the ring of rational integers; \mathbb{Q} = the field of rationals;
- \mathbb{Z}_p = the ring of p-adic integers; \mathbb{Q}_p = the field of fractions of \mathbb{Z}_p;
- \mathbb{Q}^*_p = the algebraic closure of \mathbb{Q}_p; \mathbb{C} = the field of complex numbers.

The principal reference for abelian varieties is [4]. If A is an abelian variety defined over a field K, let $\text{End}_0(A) = \text{End}_K(A) \otimes \mathbb{Q}$. If the characteristic of K is $p > 0$, let $T_p(A)$ denote the Barsotti-Tate group (p-divisible group in the terminology of Serre and Tate) associated to A. It has height $2g$, where g is the dimension of A. $T_p(A)_{\text{red}}$ = the étale part of $T_p(A)$. Let M denote the Dieudonné module of $T_p(A)$. If K is a perfect field, then M is a module over $W(K)[F, V]$, where $W(K)$ is the ring of infinite Witt vectors over K and F, V...
are indeterminates such that (i) $FV = VF = p$ and (ii) $F\alpha = \alpha F$, $\alpha V = V\alpha$ for $\alpha \in W(K)$; here σ is the unique automorphism of $W(K)$ inducing the map $x \to x^p$ in K. The module M is free of rank $2g$ over $W(K)$. For details on Dieudonné modules, see [5]. The integer $p(A)$ will denote the p-rank of an abelian variety A.

Theorem. Let A be an abelian variety of dimension ≥ 2, defined over a field k of positive characteristic p. Let $p(A) = 1$. Then $\text{End}^0(A)$ will never contain a simple subalgebra which is not a field.

Proof. Suppose that $\text{End}^0(A)$ contains a simple subalgebra L such that $1_A = 1_L$. Let C be the center of L. Then from the general theory of simple algebras, we have $[L:C] = d^2$ and $[C:Q] = e$ for some natural numbers d and e. Let ρ be the representation of $L \otimes Q_p$ on the extended Dieudonné module $M \otimes Q_p$ of $T_p(A)$. This representation is induced from the representation of $\text{End}^0(A)$. It has degree $2g$ over $W(k) \otimes Q_p$. The representation ρ splits into three parts corresponding to the splitting of M into $M^\text{et} \oplus M^\text{loc} \oplus M^\text{loc,loc}$, where M^et is the étale part of M whose Cartier dual is also étale, etc. Write $\rho = \rho_1 \oplus \rho_2 \oplus \rho_3$. The first representation ρ_1 is the representation over Q_p of $L \otimes Q_p$ on the p-adic Tate module $T_p(A)_{\text{red}} \otimes Q_p$. Since $p(A) = 1$, $T_p(A) \otimes Q_p$ is isomorphic to Q_p. Decompose $L \otimes Q_p$ into a product \(\prod M_p(Q_p), \) where $M_p(Q_p)$ is the algebra of matrices of degree d over Q_p. Since the identity of L is represented by the identity matrix, the representation ρ_1 does not contain the zero representation. Consequently $d = 1$; that is L is a field. Q.E.D.

Corollary 1. Let M_2 be the one-dimensional moduli scheme of two-dimensional abelian varieties defined over C whose endomorphism ring is an order in an indefinite quaternion division algebra H over Q. Then the fiber at any closed point is a simple abelian variety over an algebraic number field K whose reduction at every finite prime of K is either ordinary or has p-rank 0.

Remark. The abelian varieties corresponding to closed points as in Corollary 1 are called *false elliptic curves* by J.-P. Serre for the reason that they behave like elliptic curves when we reduce at a finite prime. Recall that an elliptic curve in positive characteristic is either ordinary or supersingular, i.e. the p-rank is either one or zero.

Proof of Corollary 1. As Shimura has observed in [8], M_2 has a canonical nonsingular model defined over Q which we again denote by M_2. Let A be a two-dimensional abelian variety corresponding to any closed point of M_2. A is defined over a number field, say, K. It has potential good reduction at any finite prime of K. For example, see [3]. By extending K to a finite extension if necessary, we can assume that A has good reduction everywhere. For any finite prime p of K, let A^p be the reduction of A at p. A^p is defined over a finite field of characteristic p. Since $\text{End}^0(A) \subseteq \text{End}^0(A^p)$, $\text{End}^0(A^p)$ contains an indefinite quaternion division algebra and so by the
C. ADIMOOLAM

Theorem, \(\tilde{A}^p \) can not have \(p \)-rank one. Hence either \(\tilde{A}^p \) is ordinary or it has \(p \)-rank 0. Q.E.D.

Corollary 2. Let \(A \) be a two-dimensional abelian variety as in Corollary 1. \(A \) is simple (even absolutely simple) and it is defined over a number field \(K \). Then for any finite \(p \) of \(K \), \(A^p \) is not simple.

Proof. By Corollary 1, either \(\tilde{A}^p \) is ordinary or it has \(p \)-rank zero. The following idea of the proof is due to Deligne-Rapoport [2]. \(\theta = \text{End}_K(A) \) is an order in the given indefinite quaternion division algebra \(H \). We have an embedding of \(\theta \) in \(\text{End}_k(\tilde{A}^p) \) where \(k \) is the residue field at the prime \(p \). Hence \(\theta \) can be considered as a ring of operators of \(\tilde{A}^p \). Let \(u \) be a nontrivial idempotent of \(\theta \) (note that such an idempotent exists, since \(\theta \) is a non-nilpotent subring of \(H \)). Then \(e = u \otimes 1 \) is a nontrivial idempotent of \(\theta \otimes \mathbb{Z}_p \). Let \(T_p(\tilde{A}^p) \) denote the Barsotti-Tate group of the 2-dimensional abelian variety \(\tilde{A}^p \). It has height 4. The completion of \(\theta \otimes \mathbb{Z}_p \) acts on \(T_p(\tilde{A}^p) \). Write \(T_p(\tilde{A}^p) = eT_p(\tilde{A}^p) \oplus (1 - e)T_p(\tilde{A}^p) \). Both these components are Barsotti-Tate subgroups of \(T_p(\tilde{A}^p) \), each of height 2. Corresponding to this decomposition, \(\tilde{A}^p \) can be written up to isogeny as a product of elliptic curves: \(\tilde{A}^p \sim E \times F \), where \(E = \text{image of the endomorphism } u \text{ in } \tilde{A}^p \), whose associated Barsotti-Tate group is \(eT_p(\tilde{A}^p) \) and \(F \) is the connected component of the identity of the kernel of \(u \). Since \(\tilde{A}^p \) has \(p \)-rank either 0 or 2, both \(E \) and \(F \) have \(p \)-rank either 0 or 1, since \(p \)-rank is additive and isogeny invariant. This proves that the reduction \(\tilde{A}^p \) of \(A \) is everywhere nonsimple. Indeed, it is isogenous either to a product of supersingular or ordinary elliptic curves. Q.E.D.

I thank the referee for some useful comments.

References

Department of Mathematics, University of California, Irvine, California 92717