Extremal interpolatory functions in $H^{\infty }$
HTML articles powered by AMS MathViewer
- by Knut Øyma
- Proc. Amer. Math. Soc. 64 (1977), 272-276
- DOI: https://doi.org/10.1090/S0002-9939-1977-0447586-6
- PDF | Request permission
Abstract:
Let a Blaschke sequence $\{ {z_n}\}$ and a bounded sequence $\{ {w_n}\}$ be given. If we can find an f in ${H^\infty }$ such that $f({z_n}) = {w_n}$ we may assume that $\left \| f \right \|$ is minimal. Such an f need not be unique, but a sufficient condition for uniqueness is given. Properties of f in the case of uniqueness are studied.References
- E. J. Akutowicz and L. Carleson, The analytic continuation of interpolatory functions, J. Analyse Math. 7 (1959/60), 223–247. MR 139749, DOI 10.1007/BF02787687
- V. M. Adamjan, D. Z. Arov, and M. G. Kreĭn, Infinite Hankel matrices and generalized problems of Carathéodory-Fejér and F. Riesz, Funkcional. Anal. i Priložen. 2 (1968), no. 1, 1–19 (Russian). MR 0234274, DOI 10.1007/BF01075356
- Lennart Carleson and Sigvard Jacobs, Best uniform approximation by analytic functions, Ark. Mat. 10 (1972), 219–229. MR 322410, DOI 10.1007/BF02384810
- J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR 0218587
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- E. A. Heard and J. H. Wells, An interpolation problem for subalgebras of $H^{\infty }$, Pacific J. Math. 28 (1969), 543–553. MR 243359, DOI 10.2140/pjm.1969.28.543
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
- A. Kerr-Lawson, Some lemmas on interpolating Blaschke products and a correction, Canadian J. Math. 21 (1969), 531–534. MR 247102, DOI 10.4153/CJM-1969-060-2
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 272-276
- MSC: Primary 30A80
- DOI: https://doi.org/10.1090/S0002-9939-1977-0447586-6
- MathSciNet review: 0447586