Locally convex hypersurfaces of negatively curved spaces
HTML articles powered by AMS MathViewer
- by S. Alexander
- Proc. Amer. Math. Soc. 64 (1977), 321-325
- DOI: https://doi.org/10.1090/S0002-9939-1977-0448262-6
- PDF | Request permission
Abstract:
A well-known theorem due to Hadamard states that if the second fundamental form of a compact immersed hypersurface M of Euclidean space ${E^n}(n \geqslant 3)$ is positive definite, then M is imbedded as the boundary of a convex body. There have been important generalizations of this theorem concerning hypersurfaces of ${E^n},{H^n}$, and ${S^n}$, but there seem to be no versions for hypersurfaces of spaces of variable curvature, and no proofs which generalize to these spaces. Our main result is that Hadamard’s theorem holds in any complete, simply connected Riemannian manifold of nonpositive sectional curvature.References
- Richard L. Bishop, Infinitesimal convexity implies local convexity, Indiana Univ. Math. J. 24 (1974/75), 169–172. MR 350662, DOI 10.1512/iumj.1974.24.24014
- Richard L. Bishop and Richard J. Crittenden, Geometry of manifolds, Pure and Applied Mathematics, Vol. XV, Academic Press, New York-London, 1964. MR 0169148
- Manfredo P. do Carmo and Elon Lima, Isometric immersions with semi-definite second quadratic forms, Arch. Math. (Basel) 20 (1969), 173–175. MR 244901, DOI 10.1007/BF01899010
- M. P. do Carmo and F. W. Warner, Rigidity and convexity of hypersurfaces in spheres, J. Differential Geometry 4 (1970), 133–144. MR 266105
- Shiing-shen Chern and Richard K. Lashof, On the total curvature of immersed manifolds, Amer. J. Math. 79 (1957), 306–318. MR 84811, DOI 10.2307/2372684
- P. Eberlein and B. O’Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45–109. MR 336648
- Dirk Ferus, On isometric immersions between hyperbolic spaces, Math. Ann. 205 (1973), 193–200. MR 336665, DOI 10.1007/BF01349229
- John Van Heijenoort, On locally convex manifolds, Comm. Pure Appl. Math. 5 (1952), 223–242. MR 52131, DOI 10.1002/cpa.3160050302
- Hermann Karcher, Schnittort und konvexe Mengen in vollständigen Riemannschen Mannigfaltigkeiten, Math. Ann. 177 (1968), 105–121 (German). MR 226542, DOI 10.1007/BF01350787
- Richard Sacksteder, On hypersurfaces with no negative sectional curvatures, Amer. J. Math. 82 (1960), 609–630. MR 116292, DOI 10.2307/2372973
- F. W. Warner, Extensions of the Rauch comparison theorem to submanifolds, Trans. Amer. Math. Soc. 122 (1966), 341–356. MR 200873, DOI 10.1090/S0002-9947-1966-0200873-6
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 321-325
- MSC: Primary 53C40
- DOI: https://doi.org/10.1090/S0002-9939-1977-0448262-6
- MathSciNet review: 0448262