A class of two-bridge knots with property-$P$
HTML articles powered by AMS MathViewer
- by E. J. Mayland
- Proc. Amer. Math. Soc. 64 (1977), 365-369
- DOI: https://doi.org/10.1090/S0002-9939-1977-0448335-8
- PDF | Request permission
Abstract:
A knot k has property-P provided no simply connected manifold results from performing a nontrivial elementary surgery along k. We establish property-P for certain families of two-bridge knots generalizing twist knots (Whitehead doubles of the trivial knot).References
- R. H. Bing and J. M. Martin, Cubes with knotted holes, Trans. Amer. Math. Soc. 155 (1971), 217â231. MR 278287, DOI 10.1090/S0002-9947-1971-0278287-4
- F. GonzĂĄlez-Acuña, Dehnâs construction on knots, Bol. Soc. Mat. Mexicana (2) 15 (1970), 58â79. MR 356022
- Mary-Elizabeth Hamstrom and R. P. Jerrard, Collapsing a triangulation of a âknottedâ cell, Proc. Amer. Math. Soc. 21 (1969), 327â331. MR 243510, DOI 10.1090/S0002-9939-1969-0243510-5
- John Hempel, A simply connected $3$-manifold is $S^{3}$ if it is the sum of a solid torus and the complement of a torus knot, Proc. Amer. Math. Soc. 15 (1964), 154â158. MR 157365, DOI 10.1090/S0002-9939-1964-0157365-6
- Roger C. Lyndon, On Dehnâs algorithm, Math. Ann. 166 (1966), 208â228. MR 214650, DOI 10.1007/BF01361168
- Kunio Murasugi, Remarks on knots with two bridges, Proc. Japan Acad. 37 (1961), 294â297. MR 139162
- J. P. Neuzil, Surgery on a curve in a solid torus, Trans. Amer. Math. Soc. 204 (1975), 385â406. MR 367970, DOI 10.1090/S0002-9947-1975-0367970-1
- Robert Riley, Parabolic representations of knot groups. I, Proc. London Math. Soc. (3) 24 (1972), 217â242. MR 300267, DOI 10.1112/plms/s3-24.2.217
- Robert Riley, Knots with the parabolic property $P$, Quart. J. Math. Oxford Ser. (2) 25 (1974), 273â283. MR 358758, DOI 10.1093/qmath/25.1.273
- Horst Schubert, Knoten mit zwei BrĂŒcken, Math. Z. 65 (1956), 133â170 (German). MR 82104, DOI 10.1007/BF01473875
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 365-369
- MSC: Primary 55A25
- DOI: https://doi.org/10.1090/S0002-9939-1977-0448335-8
- MathSciNet review: 0448335