A note on the central limit theorem for square-integrable processes
HTML articles powered by AMS MathViewer
- by Marjorie G. Hahn
- Proc. Amer. Math. Soc. 64 (1977), 331-334
- DOI: https://doi.org/10.1090/S0002-9939-1977-0448487-X
- PDF | Request permission
Abstract:
A method is given for constructing sample-continuous processes which do not satisfy the central limit theorem in $C[0,1]$. Let $\{ X(t):t \in [0,1]\}$ be a stochastic process. Using our method we characterize all possible nonnegative functions f for which the condition \[ E( X(t) - X(s) )^2 \leqslant f( | t - s | )\] alone is sufficient to imply that $X(t)$ satisfies the central limit theorem in $C[0,1]$.References
- R. M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Functional Analysis 1 (1967), 290–330. MR 0220340, DOI 10.1016/0022-1236(67)90017-1
- Marjorie G. Hahn, Conditions for sample-continuity and the central limit theorem, Ann. Probability 5 (1977), no. 3, 351–360. MR 440679, DOI 10.1214/aop/1176995796
- Marjorie G. Hahn and Michael J. Klass, Sample-continuity of square-integrable processes, Ann. Probability 5 (1977), no. 3, 361–370. MR 440680, DOI 10.1214/aop/1176995797
- Jean-Pierre Kahane, Some random series of functions, D. C. Heath and Company Raytheon Education Company, Lexington, Mass., 1968. MR 0254888
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 331-334
- MSC: Primary 60F05
- DOI: https://doi.org/10.1090/S0002-9939-1977-0448487-X
- MathSciNet review: 0448487