Multiple integrals of Lipschitz functions in the calculus of variations
HTML articles powered by AMS MathViewer
- by Frank H. Clarke
- Proc. Amer. Math. Soc. 64 (1977), 260-264
- DOI: https://doi.org/10.1090/S0002-9939-1977-0451156-3
- PDF | Request permission
Abstract:
We consider a multiple integral problem in the calculus of variations in which the integrand is locally Lipschitz but not differentiable, and in which minimization takes place over a Sobolev space. Using a minimax theorem, we derive an analogue of the classical Euler condition for optimality, couched in terms of “generalized gradients". We proceed to indicate how these results may be applied to deduce existence and smoothness properties of solutions to certain Poisson equations.References
- Frank H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247–262. MR 367131, DOI 10.1090/S0002-9947-1975-0367131-6 I. Ekeland, Théorie des jeux, Presses Univ. France, Paris, 1975.
- Ivar Ekeland and Roger Temam, Analyse convexe et problèmes variationnels, Collection Études Mathématiques, Dunod, Paris; Gauthier-Villars, Paris-Brussels-Montreal, Que., 1974 (French). MR 0463993
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 0202511
- R. T. Rockafellar, Measurable dependence of convex sets and functions on parameters, J. Math. Anal. Appl. 28 (1969), 4–25. MR 247019, DOI 10.1016/0022-247X(69)90104-8
- François Trèves, Basic linear partial differential equations, Pure and Applied Mathematics, Vol. 62, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0447753
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 260-264
- MSC: Primary 49F99
- DOI: https://doi.org/10.1090/S0002-9939-1977-0451156-3
- MathSciNet review: 0451156