## Third order linear differential equations with periodic coefficients

HTML articles powered by AMS MathViewer

- by L. H. Erbe
- Proc. Amer. Math. Soc.
**64**(1977), 241-247 - DOI: https://doi.org/10.1090/S0002-9939-1977-0454208-7
- PDF | Request permission

## Abstract:

The third order linear differential equation $Ly = y''â€™ + {p_2}(t)y'' + {p_1}(t)yâ€™ + {p_0}(t)y = 0$ is studied, where ${p_i}(t)$ are continuous real-valued and periodic of period $\omega > 0$. Various criteria are obtained which guarantee â€śpartialâ€ť asymptotic stability or instability by means of effective bounds on the Floquet characteristic multipliers of $Ly = 0$.## References

- W. A. Coppel,
*Disconjugacy*, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR**0460785** - L. Erbe,
*Stability and periodicity for linear differential equations with periodic coefficients*, Ann. Polon. Math.**31**(1975), no.Â 2, 131â€“140. MR**417508**, DOI 10.4064/ap-31-2-131-140 - Lynn Erbe,
*Disconjugacy conditions for the third order linear differential equation*, Canad. Math. Bull.**12**(1969), 603â€“613. MR**252755**, DOI 10.4153/CMB-1969-078-9 - Philip Hartman,
*On disconjugacy criteria*, Proc. Amer. Math. Soc.**24**(1970), 374â€“381. MR**251304**, DOI 10.1090/S0002-9939-1970-0251304-8 - Lloyd K. Jackson,
*Disconjugacy conditions for linear third-order differential equations*, J. Differential Equations**4**(1968), 369â€“372. MR**226112**, DOI 10.1016/0022-0396(68)90023-5 - Gary D. Jones,
*An asymptotic property of solutions of $y''â€™+py^{\prime } +qy=0$*, Pacific J. Math.**47**(1973), 135â€“138. MR**326065** - A. Lasota,
*Sur la distance entre les zĂ©ros de lâ€™Ă©quation diffĂ©rentielle linĂ©aire du troisiĂ¨me ordre*, Ann. Polon. Math.**13**(1963), 129â€“132 (French). MR**160972**, DOI 10.4064/ap-13-2-129-132 - A. C. Lazer,
*The behavior of solutions of the differential equation $y''â€™+p(x)y^{\prime } +q(x)y=0$*, Pacific J. Math.**17**(1966), 435â€“466. MR**193332** - A. Ju. Levin,
*Some estimates for a differentiable function*, Dokl. Akad. Nauk SSSR**138**(1961), 37â€“38 (Russian). MR**0126013** - G. A. Losâ€˛,
*A sufficient test for the stability of the trivial solution of a third-order differential equation with periodic coefficients*, Differencialâ€˛nye Uravnenija**3**(1967), 1707â€“1717 (Russian). MR**0218688** - V. Ĺ eda,
*On the three-point boundary-value problem for a non-linear third order ordinary differential equation*, Arch. Math. (Brno)**8**(1972), 85â€“98 (1973). MR**322257** - E. L. Tonkov and G. I. Jutkin,
*Periodic solutions, and stability of a linear differential equation with periodic coefficients*, Differencialâ€˛nye Uravnenija**5**(1969), 1990â€“2001 (Russian). MR**0254347**

## Bibliographic Information

- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**64**(1977), 241-247 - MSC: Primary 34D35
- DOI: https://doi.org/10.1090/S0002-9939-1977-0454208-7
- MathSciNet review: 0454208