A cardinal inequality for topological spaces involving closed discrete sets
HTML articles powered by AMS MathViewer
- by John Ginsburg and R. Grant Woods
- Proc. Amer. Math. Soc. 64 (1977), 357-360
- DOI: https://doi.org/10.1090/S0002-9939-1977-0461407-7
- PDF | Request permission
Abstract:
Let X be a ${T_1}$ topological space. Let $a(X) = \sup \{ \alpha :X$ has a closed discrete subspace of cardinality $\alpha \}$ and $v(X) = \min \{ \alpha :{\Delta _X}$ can be written as the intersection of $\alpha$ open subsets of $X \times X\}$; here ${\Delta _X}$ denotes the diagonal $\{ (x,x):x \in X\}$ of X. It is proved that $|X| \leqslant \exp (a(X)v(X))$. If, in addition, X is Hausdorff, then X has no more than $\exp (a(X)v(X))$ compact subsets.References
- A. V. Arhangel′skiĭ, The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR 187 (1969), 967–970 (Russian). MR 0251695
- D. K. Burke and R. E. Hodel, The number of compact subsets of a topological space, Proc. Amer. Math. Soc. 58 (1976), 363–368. MR 418014, DOI 10.1090/S0002-9939-1976-0418014-0
- R. Engelking, Outline of general topology, North-Holland Publishing Co., Amsterdam; PWN—Polish Scientific Publishers, Warsaw; Interscience Publishers Division John Wiley & Sons, Inc., New York, 1968. Translated from the Polish by K. Sieklucki. MR 0230273
- P. Erdös and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427–489. MR 81864, DOI 10.1090/S0002-9904-1956-10036-0
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- I. Juhász, Cardinal functions in topology, Mathematical Centre Tracts, No. 34, Mathematisch Centrum, Amsterdam, 1971. In collaboration with A. Verbeek and N. S. Kroonenberg. MR 0340021
- Miroslav Katětov, Über H-abgeschlossene und bikompakte Räume, Časopis Pěst. Mat. Fys. 69 (1940), 36–49 (German, with Czech summary). MR 0001912
- Petr Simon, A note on cardinal invariants of square, Comment. Math. Univ. Carolinae 14 (1973), 205–213. MR 339044
- V. E. Šneĭder, Continuous images of Suslin and Borel sets. Metrization theorems, Doklady Akad. Nauk SSSR (N.S.) 50 (1945), 77–79 (Russian). MR 0053493
- Stephen Willard, General topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0264581
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 357-360
- MSC: Primary 54A25
- DOI: https://doi.org/10.1090/S0002-9939-1977-0461407-7
- MathSciNet review: 0461407