DECOMPOSABLE TENSORS AS A QUADRATIC VARIETY

ROBERT GRONE¹

ABSTRACT. Let V_i be a finite dimensional vector space over a field F for each $i = 1, 2, ..., m$, and let z be a tensor in $V_1 \otimes \cdots \otimes V_m$. In this paper a set of homogeneous quadratic polynomials in the coordinates of z is exhibited for which the associated variety is the set of decomposable tensors. In addition, a question concerning the maximal tensor rank in such a situation is answered, and an application to other symmetry classes of tensors is cited.

Introduction. Let V_1 and V_2 be *m*-dimensional and *n*-dimensional vector spaces over the filed F. After choosing bases of V_1 and V_2 , we may consider $M_{m,n}(F)$, the space of m-by-n matrices over F, to be a model of the tensor space $V_1 \otimes V_2$ (see, for example, [1]). In this model, decomposable tensors correspond to matrices of rank less than two, which is a quadratic variety corresponding to the set of 2-by-2 subdeterminants of $X = [x_{ij}]$, the *m*-by-*n* generic matrix of mn indeterminates. In this paper, this result is extended to a tensor product of a finite number of vector spaces.

Notation. Let V_i , $i = 1, \ldots, m$, denote a vector space of dimension n_i over F with ordered basis $E_i = \{e_{i_1}, \ldots, e_{i_n}\}\$, and let $N = n_1 \cdots n_m$.

Let Γ or $\Gamma(n_1, \ldots, n_m)$ denote the set of functions, γ , from $\{1, \ldots, m\}$ to the positive integers which satisfy: $\gamma(i) \leq n_i$, $i = 1, \ldots, m$. For $\gamma \in \Gamma$, let $e_{\gamma}^{\otimes} = e_{1\gamma(1)} \otimes \cdots \otimes e_{m\gamma(m)}$, so that $E^{\otimes} = \{e_{\gamma}^{\otimes} | \gamma \in \Gamma \}$ is a basis of the tensor product $V_1 \otimes \cdots \otimes V_m$. We shall consider Γ to be ordered via lexicographic ordering.

The N-tuple $(p(\gamma))_{\gamma \in \Gamma}$ will always be associated with the tensor

$$
z=\sum_{\gamma\in\Gamma}p(\gamma)e_{\gamma}^{\otimes}.
$$

For $\alpha, \beta \in \Gamma$, $k = 1, \ldots, m$, let $\alpha[k : \beta]$ denote the sequence obtained by replacing $\alpha(k)$ with $\beta(k)$.

The tensor $x \in V_1 \otimes \cdots \otimes V_m$ will be referred to as *decomposable* if there exist vectors $v_i \in V_i$, $i = 1, \ldots, m$, such that $z = v_1 \otimes \cdots \otimes v_m$.

The main result is the following

O American Mathematical Society 1977

Received by the editors August 24, 1976.

AMS (A/05) subject classifications (1970). Primary 15A69, 14M15.

Key words and phrases. Decomposable tensor, quadratic variety, quadratic Plücker relation, tensor rank.

¹The work of the author was supported by an Air Force Office of Scientific Research Grant #72-2164.

228 ROBERT GRONE

THEOREM. The tensor $z = \sum_{\gamma \in \Gamma} p(\gamma) e_{\gamma}^{\otimes}$ is decomposable iff $p(\alpha)p(\beta) = p(\alpha[k:\beta])p(\beta[k:\alpha]), \quad k = 1, \ldots, m; \alpha, \beta \in \Gamma.$

We now will exhibit the necessary lemmas and subsequently the proofs; but first we require some additional notation. For any fixed $t = 1, \ldots, m$ 1, we will say that a tensor z is *t*-decomposable iff there exists $z_1 \in V_1$ $\otimes \cdots \otimes V_i$, $z_2 \in V_{i+1} \otimes \cdots \otimes V_m$ such that $z = z_1 \otimes z_2$. Also, let Γ_i denote $\Gamma(n_1, \ldots, n_t)$, and let Γ'_t denote $\Gamma(n_{t+1}, \ldots, n_m)$, and for $\gamma \in \Gamma$, let

$$
\gamma_t = (\gamma(1), \ldots, \gamma(t)) \in \Gamma_t, \quad \gamma_t' = (\gamma(t+1), \ldots, \gamma(m)) \in \Gamma_t'.
$$

Conversely, for $u \in \Gamma_t$, $v \in \Gamma'_t$ let $(u, v) \in \Gamma$ be defined by

$$
(u,v)=(u(1),\ldots,u(t),v(1),\ldots,v(m-t)).
$$

Note that $\gamma = (u, v)$ iff $\gamma_t = u$ and $\gamma_t' = v$.

LEMMA 1. Z is decomposable iff z is t-decomposable for all $t = 1, \ldots, m$ 1.

Notation. Let $z(t)$ denote the $n_1 \ldots n_t$ -by- $n_{t+1} \ldots n_m$ matrix with rows and columns indexed by Γ_t and Γ'_t , and which has as its entry in the *u*th row and *v*th column the value $p((u, v))$.

LEMMA 2. Z is t-decomposable iff

$$
p((u, v))p((\alpha, \beta)) = p((\alpha, v))p((u, \beta))
$$

for all $u, \alpha \in \Gamma$; $v, \beta \in \Gamma'$.

LEMMA 3. Z is decomposable iff whenever α , β , α^* , $\beta^* \in \Gamma$ and $\{\alpha(i), \beta(i)\}$ (i) } = { $\alpha^*(i)$, $\beta^*(i)$ }, $i=1,\ldots,m$, then $p(\alpha)p(\beta) = p(\alpha^*)p(\beta^*)$.

PROOF OF LEMMA 1. It suffices to assume z is t -decomposable for all t and show z is decomposable. Since z is 1-decomposable there is a vector $v_1 \in V_1$ and a tensor $z_1 \in V_2 \otimes \cdots \otimes V_m$ such that $z = v_1 \otimes z_1$. Since z is 2-decomposable there exist $z_2 \in V_1 \otimes V_2$ and $z_3 \in V_3 \otimes \cdots \otimes V_m$ such that $v_1 \otimes z_1 = z_2 \otimes z_3$. An easy dimension argument involving the dual space of $V_1 \otimes \cdots \otimes V_m$ (see, for example, [1] for a good background) yields that $z_2 = v_1 \otimes v_2$ for some $v_2 \in V_2$. An induction then completes the proof.

PROOF OF LEMMA 2. In [1] it is shown that the space of $n_1 \ldots n_i$ -by $n_{i-1} \ldots n_m$ matrices is a tensor product of $V_1 \otimes \cdots \otimes V_t$ with V_{i+1} $\otimes \cdots \otimes V_m$, and that in this model the decomposable elements correspond to matrices of rank less than two. These matrices are exactly those whose 2-by-2 subdeterminants all vanish. In the present situation, z is t -decomposable in $V_1 \otimes \cdots \otimes V_m$ iff z is decomposable when viewed as a 2-fold tensor in $(V_1 \otimes \cdots \otimes V_t) \otimes (V_{t+1} \otimes \cdots \otimes V_m)$ iff all the 2-by-2 subdeterminants of $z(t)$ are zero iff the conclusion of Lemma 2 holds.

PROOF OF LEMMA 3. By Lemmas 2 and 3 it suffices to show that the conclusion of Lemma 2 is equivalent to the conclusion of Lemma 3, and it clearly suffices to show that the conclusion of Lemma 2 implies the conclusion of Lemma 3. Assume the conclusion of Lemma 2 holds. For $t = 1$, we have

$$
p(\alpha)p(\beta) = p(\alpha[1:\beta])p(\beta[1:\alpha]),
$$

and for $t = 2$ we have

$$
p(\alpha)p(\beta) = p((\beta_2, \alpha'_2))p((\alpha_2, \beta'_2)).
$$

Simultaneously, these conditions yield that interchanging the first and/or second elements of α and β will not change the value of $p(\alpha)p(\beta)$. Inductively, if α^* , β^* are formed from α , β by interchanging some of the components, then $p(\alpha)p(\beta) = p(\alpha^*)p(\beta^*)$, and the proof of Lemma 3 is complete.

PROOF OF THE THEOREM. It suffices to show that the conclusion of the theorem implies the conclusion of Lemma 3. This is true since any α^* , β^* can be obtained from α , β by a finite sequence of interchanges of the type explicit in the conclusion of Lemma 3, and the theorem is proved.

A corollary. Let G be a subgroup of S_m , the *m*th symmetric group, and let $\lambda: G \to F$ be a character. Let V be a vector space over F with mth tensor power $\mathcal{D}^{m}V$. Let $T(G,\lambda)$ be the symmetrizer corresponding to G and λ , which is a linear map from $\otimes^m V$ onto $V_\lambda(G)$, the symmetry class of tensors corresponding to G and λ . The set of decomposable symmetrized tensors, $\{v_1^* \cdots * v_m | v_i \in V_i, i = 1, \ldots, m\}$, is the image of the set of decomposable tensors in $\otimes^m V$, and since the linear image of a quadratic variety is also a quadratic variety, we have proved the following

COROLLARY. The set of decomposable elements in any symmetry class of tensors is a quadratic variety.

This result is classically known in the case when $G = S_m$, $\lambda = \varepsilon$, and $V_{\lambda}(G) = \bigwedge^{m}V$, the *m*th Grassmann space.

EXAMPLE. Let $\{e_1, e_2, e_3, e_4\}$ be a basis of V, and let $z^{\otimes} \in V \otimes V$ be given by $\Sigma^4_{i,j=1} p(i,j)e_i \otimes e_j$. Then the corresponding z^{*} in $V \wedge V$ is given by $\sum_{1 \le i < j \le 4} q(i,j)e_i \wedge e_j$, where $q(i,j) = \frac{1}{2}(p(i,j) - p(j,i))$. It is known that z^{*} is decomposable in $V \wedge V$ iff the quadratic Plücker relation,

 $q(1, 2)q(3, 4) + q(2, 3)q(1, 4) - q(1, 3)q(2, 4) = 0$

is satisifed. By a direct calculation, if the conclusion of the theorem is satisfied for the $p(i, j)$'s, then the quadratic Plücker relation is satisfied for the $q(i, j)$'s.

A conjecture. The idea in the proof of Lemma 2 may be used to answer a conjecture on tensor rank. For a tensor $z \in V_1 \otimes \cdots \otimes V_m$, let $\rho(z)$ be the least positive integer k for which z can be written as a sum of k decomposable tensors. This quantity is referred to as the tensor rank of z. Watkins [3] has shown that if $n_1 \geq \cdots \geq n_m$, then there exist elements of rank n_2 ; and has asked if this is the maximum rank for elements in $V_1 \otimes \cdots \otimes V_m$.

For $1 \leq t \leq m$ and $1 \leq \omega(1) \leq \cdots \leq \omega(t) \leq m$, let

230 ROBERT GRONE

$$
n_{\omega} = \prod_{i=1}^{l} n_{\omega(i)}, \qquad M = \max_{\omega} \min\{n_{\omega}, N/n_{\omega}\}.
$$

This quantity also occurs [2] in an inequality giving an upper bound for the dimension of a space W for which there exists an *m*-linear function,

$$
\varphi\colon V_1\times\cdots\times V_m\to W,
$$

which is onto.

The following answers Watkins' conjecture in the negative.

THEOREM. There exist tensors of rank at least M in $V_1 \otimes \cdots \otimes V_m$.

Proof. We may assume $M = n_1 \cdots n_r$, and we may regard $V_1 \otimes \cdots \otimes V_r$ V_m as a tensor product of the M-dimensional space $V_1 \otimes \cdots \otimes V_r$ with the N/M -dimensional space $V_{i+1} \otimes \cdots \otimes V_m$ by the associativity of tensor product. It is known that in a tensor product of spaces of dimension M and M_1 , with $M \leq M_1$, there exist tensors of rank M. Hence there exists $z \in V_1$ $\overline{\otimes} \cdots \otimes V_m$ which cannot be written as $\sum_{i=1}^{M-1} z_i \otimes z'_i$, with $z_i \in V_1$ $\otimes \cdots \otimes V_i$, $z_i \in V_{i+1} \otimes \cdots \otimes V_m$, $i = 1, \ldots, M - 1$. The tensor rank of this element is clearly at least M, and the theorem is proved.

Further questions. In relation to Watkins' question, is the M given in the second theorem a maximum for ranks of tensors?

In $V_1 \otimes V_2$, the set of elements of rank less than k forms a kth degree variety (corresponding to the k -by- k subdeterminants of X). Does this fact have an analog when $m > 2$?

What are the analogues of the quadratic Plücker relations in other symmetry classes of tensors? Specifically, what are the relations in the mth symmetric space?

BIBLIOGRAPHY

1. M. Marcus, Finite dimensional multilinear algebra. Part I, Pure and Appl. Math., Vol. 23, Dekker, New York, 1975. MR 50 #4599.

2. ____, A dimension inequality for multilinear functions, Inequalities, III (Proc. Third Sympos., Univ. of California, Los Angeles, Calif., 1969), Academic Press, New York, 1972, pp. 217-224. MR 48 #11174.

3. W. Watkins, Linear maps and tensor rank, J. Algebra 38 (1976), 75-84.

Department of Mathematics, University of California, Santa Barbara, California 93106