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DECOMPOSABLE TENSORS AS A QUADRATIC VARIETY

ROBERT GRONE1

Abstract. Let V¡ be a finite dimensional vector space over a field F for

each ; = 1, 2,..., m, and let z be a tensor in Vx ® • • • ® Vm. In this

paper a set of homogeneous quadratic polynomials in the coordinates of z is

exhibited for which the associated variety is the set of decomposable tensors.

In addition, a question concerning the maximal tensor rank in such a

situation is answered, and an application to other symmetry classes of

tensors is cited.

Introduction. Let Vx and V2 be w-dimensional and «-dimensional vector

spaces over the filed F. After choosing bases of Vx and V2, we may consider

Mmn(F), the space of w-by-n matrices over F, to be a model of the tensor

space Vx ® V2 (see, for example, [1]). In this model, decomposable tensors

correspond to matrices of rank less than two, which is a quadratic variety

corresponding to the set of 2-by-2 subdeterminants of X = [xA the m-by-n

generic matrix of mn indeterminates. In this paper, this result is extended to a

tensor product of a finite number of vector spaces.

Notation. Let V¡, i = 1, . . . , m, denote a vector space of dimension «, over

F with ordered basis E¡ = {e¡, . . . , e¡ }, and let N = nx ■ • ■ nm.

Let T or T(nx, . . . , nm) denote the set of functions, y, from {1, . . . , m) to

the positive integers which satisfy: y(i) < n¡, i = 1, . . . , m. For y E T, let

e® = eXy{X) ® ■ • • ® emy(m), so that E® = {ef\y E T} is a basis of the

tensor product Vx® • • ■ ® Vm. We shall consider T to be ordered via

lexicographic ordering.

The JV-tuple (p(y))yer will always be associated with the tensor

' = 2 p{y)e?-

For a, ß E T, k = 1, . . . , m, let a[Ac : ß] denote the sequence obtained by

replacing a (Ac) with ß(k).

The tensor x E Vx® ■ ■ ■ ® Vm will be referred to as decomposable if

there exist vectors v¡ E V¡, i = \, . . . , m, such that z = vx ® ■ ■ ■ ® vm.

The main result is the following
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Theorem. The tensor z = "2yerp(y)e® is decomposable iff

p(a)p(ß) = p(a[k: ß])p(ß[k: a]),   k = 1, . . . , m; a, ß E Y.

We now will exhibit the necessary lemmas and subsequently the proofs;

but first we require some additional notation. For any fixed t = 1, . . . , m —

1, we will say that a tensor z is t-decomposable iff there exists zxE Vx

® • • • <g> Vr z2 E Vl+X ® • • • ® Vm such that z = z, ® z2. Also, let T,

denote r(«,, . . . , n,), and let T', denote r(w,+1, . . . , nm), and for y ET, let

y, = (y(l), . . . , y(t)) E Y„    y't = (y(t + 1), . . . , y(m)) E T'r

Conversely, for u E Yt, v E Y\ let (u, v) E Y be defined by

(u,v) = {u(\),...,u(t),v(\),...,v(m-t)).

Note that y = (u, v) iff y, = u and y,' = p.

Lemma \. Z is decomposable iff z is t-decomposable for all t = I,. ...., m —

1.

Notation. Let z(i) denote the /?, . . . nt-by-nt+x . . . nm matrix with rows and

columns indexed by T, and Y't, and which has as its entry in the wth row and

fth column the valuep((u, v)).

Lemma 2. Z is ¡-decomposable iff

p{(u,v))p((a,ß))=p{(a,v))p{(u,ß))

for all u, a EY,;v,ß E Y'r

Lemma 3. Z is decomposable iff whenever a, ß, a*, ß* EY and {a(i), ß(i)}

(i)} = {«*(/), ß*(i)}, i-ï,...,m, thenp(a)p(ß) = p(a*)p(ß*).

Proof of Lemma 1. It suffices to assume z is /-decomposable for all t and

show z is decomposable. Since z is 1-decomposable there is a vector vx E Vx

and a tensor z, E V2 ® • • • ® Vm such that z = vx ® zx. Since z is 2-de-

composable there exist z2 E Vx (8) V2 and z3 E V3 ® • • • <g> Vm such that

u, ® z, = z2 0 z3. An easy dimension argument involving the dual space of

Vx® ■ • ■ ® Vm (see, for example, [1] for a good background) yields that

z2 = vx ® v2 for some v2 E V2. An induction then completes the proof.

Proof of Lemma 2. In [1] it is shown that the space of «, .. . «,-by-

«,_i • • • nm matrices is a tensor product of K, ® ■ ■ ■ ® V, with Vl+X

® • ■ • ® Vm, and that in this model the decomposable elements correspond

to matrices of rank less than two. These matrices are exactly those whose

2-by-2 subdeterminants all vanish. In the present situation, z is ¿-decompos-

able in Vx <S> • • • ® Vm iff z is decomposable when viewed as a 2-fold tensor

in (Vx® ■ ■ ■ <8> Vt) ® (Vl+X ® ■ ■ ■ ® VJ iff all the 2-by-2 subdetermi-

nants of z(t) are zero iff the conclusion of Lemma 2 holds.

Proof of Lemma 3. By Lemmas 2 and 3 it suffices to show that the

conclusion of Lemma 2 is equivalent to the conclusion of Lemma 3, and it

clearly suffices to show that the conclusion of Lemma 2 implies the conclu-
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sion of Lemma 3. Assume the conclusion of Lemma 2 holds. For / = 1, we

have

p(a)p(ß)=p(a[\:ß])p(ß[l:a]),

and for / = 2 we have

p(a)p(ß)=p{(ß2,a2))p((a2,ß2[)).

Simultaneously, these conditions yield that interchanging the first and/or

second elements of a and ß will not change the value of p(a)p(ß). Induc-

tively, if a*, ß* are formed from a, ß by interchanging some of the compo-

nents, then/»(a)/»( ß) = p(a*)p(ß*), and the proof of Lemma 3 is complete.

Proof of the Theorem. It suffices to show that the conclusion of the

theorem implies the conclusion of Lemma 3. This is true since any a*, ß* can

be obtained from a, ß by a finite sequence of interchanges of the type explicit

in the conclusion of Lemma 3, and the theorem is proved.

A corollary. Let G be a subgroup of Sm, the wth symmetric group, and let

X: G -> F be a character. Let V be a vector space over F with wth tensor

power ® mV. Let T(G,X) be the symmetrizer corresponding to G and X, which

is a linear map from ®mV onto VX(G), the symmetry class of tensors

corresponding to G and X. The set of decomposable symmetrized tensors,

{vx* ■ ■ ■ *um|ü,- E V¡,i = 1, . . . , m], is the image of the set of decomposable

tensors in ®mV, and since the linear image of a quadratic variety is also a

quadratic variety, we have proved the following

Corollary. The set of decomposable elements in any symmetry class of

tensors is a quadratic variety.

This result is classically known in the case when G = Sm, X = e, and

V\(G) = /\mV, the wth Grassmann space.

Example. Let {ex, e2, e2, e4} be a basis of V, and let z® E V ® V be given

by 2^_,/»(/',/)e, ® e,. Then the corresponding z* in  V/\ V is given by

2i«<K*?(í,/H A eP where ?('>/) " \(P(iJ) - />(/> '))• It is known that z"

is decomposable in V f\ V iff the quadratic Plücker relation,

¿7(1, 2)¿7(3, 4) + ¿7(2, 3)^(1, 4) - ¿7(1, 3)^(2, 4) = 0,

is satisifed. By a direct calculation, if the conclusion of the theorem is

satisfied for ihep(i,j)'s, then the quadratic Plücker relation is satisfied for the

q(hj)'s-

A conjecture. The idea in the proof of Lemma 2 may be used to answer a

conjecture on tensor rank. For a tensor z E Vx ® ■ ■ • ® Vm, let p(z) be the

least positive integer Ac for which z can be written as a sum of Ac decomposable

tensors. This quantity is referred to as the tensor rank of z. Watkins [3] has

shown that if n, > • • • > nm, then there exist elements of rank n2; and has

asked if this is the maximum rank for elements in V, ® ■ ■ ■ ® V .
1 m

For 1 < t < m and 1 < w(l) < • • • < u(t) < w, let
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nu = II nuii),       M = max  min{«tt, N/nu).
; = i "

This quantity also occurs [2] in an inequality giving an upper bound for the

dimension of a space W for which there exists an w-linear function,

9- Vx X ■ ■ ■ X Vm - W,

which is onto.

The following answers Watkins' conjecture in the negative.

Theorem. There exist tensors of rank at least M in Vx® ■ • ■ ® Vm.

Proof. We may assume M = nx • ■ ■ nt, and we may regard Vx® ■ ■ • ®

Vm as a tensor product of the M-dimensional space Vx ® ■ ■ ■ ® Vt with the

N/ M-dimensional space Vl+X ® ■ • ■ ® Vm by the associativity of tensor

product. It is known that in a tensor product of spaces of dimension M and

A/,, with M < M,, there exist tensors of rank M. Hence there exists z E Vx

® ■ ■ ■ ® Vm which cannot be written as Sfi"¡ "z, ® z,', with z, E Vx

® ■ ■ ■ ® V„ z\ E V,+x ® ■ ■ ■ ® Vm, i = 1, . . . , M - 1. The tensor rank

of this element is clearly at least M, and the theorem is proved.

Further questions. In relation to Watkins' question, is the M given in the

second theorem a maximum for ranks of tensors?

In K, ® V2, the set of elements of rank less than k forms a Acth degree

variety (corresponding to the Ac-by-Ac subdeterminants of X). Does this fact

have an analog when m > 2?

What are the analogues of the quadratic Plücker relations in other

symmetry classes of tensors? Specifically, what are the relations in the wth

symmetric space?
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