Duality and alternative in multi-objective optimization
HTML articles powered by AMS MathViewer
- by Elemer E. Rosinger
- Proc. Amer. Math. Soc. 64 (1977), 307-312
- DOI: https://doi.org/10.1090/S0002-9939-1977-0679534-8
- PDF | Request permission
Abstract:
Within a general framework containing multiobjective optimization, an equivalence between duality properties and alternative conditions is established for pairs of constrained optimization problems. Sufficient conditions for a Pareto type duality and a multiobjective strong duality are obtained.References
- Karl-Heinz Elster and Reinhard Nehse, Konjugierte Operatoren und Subdifferentiale, Math. Operationsforsch. Statist. 6 (1975), no. 4, 641–657 (German, with English and Russian summaries). MR 388035, DOI 10.1080/02331937508842279
- L. McLinden, Duality theorems and theorems of the alternative, Proc. Amer. Math. Soc. 53 (1975), no. 1, 172–175. MR 395848, DOI 10.1090/S0002-9939-1975-0395848-1
- Anthony L. Peressini, Ordered topological vector spaces, Harper & Row, Publishers, New York-London, 1967. MR 0227731
- Jochem Zowe, A duality theorem for a convex programming problem in order complete vector lattices, J. Math. Anal. Appl. 50 (1975), 273–287. MR 416591, DOI 10.1016/0022-247X(75)90022-0
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 307-312
- MSC: Primary 90A05
- DOI: https://doi.org/10.1090/S0002-9939-1977-0679534-8
- MathSciNet review: 0679534