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A BEST POSSIBLE EXTENSION OF THE

HAUSDORFF-YOUNG THEOREM

ROBERT M. YOUNG

Abstract. The purpose of this note is to show that a recent result of A. M.

Sedleckii on nonharmonic Fourier series in Lp(-it,it) has as a simple

consequence a "best possible" extension of the classical Hausdorff-Young

theorem.

Theorem. Leí 1 < p < 2 and let q be the conjugate exponent. Let {Xn} be

any sequence of complex numbers for which

(O sxxp\X„ - n\<(p - \)/2p        (-oo<n<oo).

If {cn} E lp, then there is a function f in Lq( — TT,Tr) such that

O cn=f(Xn) = ±fj(t)e**'dt.

If condition (I) is replaced by the weaker condition

(3) \Xn-n\<(p-\)/2p,

then the conclusion of the theorem is false.

Proof. Under the conditions of the theorem, there is an isomorphism of

Lp(-tt, tt) which maps e"" into e,x"' [4]. It follows that for some constant

m > 0 and every finite sequence {an},

HI2<v"iL <I2^MI.Up      II Up

This, together with the Hausdorff-Young theorem, shows that

m(l\an\Í/9<\\lane^\\p.

But the above inequality guarantees [2] that the equations in (2) are solvable

for/in Lq(- tt, tt), and the first half of the theorem is established.

To see that condition (1) cannot be replaced by (3), let

ft. -

and choose {\,} such that

n- (p - \)/2p,    n > 0,

0, n = 0,

n + (p - \)/2p,    n < 0,
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\K -n\<(p- \)/2p   and    2 \K ~ ft.| < «.

Since {e'^'}„^0 is complete in Lp(—tr, it) [3, p. 65], so too is {e,A"'}n7t0 [1, p.

66]. It follows, in particular, Jhat there is no function / in Lq(—m, m) for

which f(Xn) = 0 (n ^ 0) and/(X0) = 1, and the proof is complete.
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