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A SHORT PROOF OF AN INEQUALITY OF CARLESON'S

CHARLES W. NEVILLE1

Abstract. We give a simple proof that if a¡, i = 1,2. is a uniformly

separated sequence in the unit disk, then 2(1 - |a,|2)|/(a,)|p < ÀÏ|/||J, for

all/ B Hp and I < p < oo.

Let C denote the complex plane, A(a,r) denote the disk {z: \z - a\ < r),

and let Hp denote Hardy class Hp of A(0,1) for 1 < p < oo. The key step in

the duality proof of the Carleson interpolation theorem is to prove

Lemma 1. Let a¡, i = 1,2, ... , be a uniformly separated sequence in A(0,1).

Then

2(i-N2)i/(«,)r<^iiyir,
for allf E Hp and 1 < p < oo.

If |5,(a,)| > 8 for all /, where B¡ is the Blaschke product vanishing on {ay.

j =£ /'}, then the best value of K is Cln(l/Ô), which comes from Carleson's

proof [1] tempered with maximal functions. (I want to thank the referee for

pointing this out to me.) We shall give a much simpler proof that K < oo,

although our value for K will not be as good. We shall show that if

0 < 8 < \, then we may choose

(1) K = 32/S4.

We   shall   need   the   Hilbert   space   A2,x   = {/   analytic   on   A(0,1):

t"7a(o,oI/WI2(i - \A2)dxdy < °°}- The A%x norm of f(z) = 2V is
easily seen to be 2|c„|2/(« + •)(« + 2)- Clearly A2-1 = {/': / G H2) and

ll/'lki < ll/lb- The following lemma, concerning sums of squares of

normalized point evaluations in A2,1, was given in slightly different form by

Shapiro and Shields [4, p. 529].

Lemma 2. Let b¡, i = 1,2, . . ., be a sequence in A(0,1). Suppose 0 < tj < j

and \b¡ - bj\/\\ - b¡bj\ > tj if i ¥= j. Then

2{\-\bi\i\f(bi)\2<32v-2\\f]\l

for allf EA2'X.
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Proof. A little computation using the conformai invariance of the pseudo-

hyperbolic metric p(b¡,bj) = \b¡ - bj\/\l - b¡bj\ shows that

ù(bl,(^(l-\blf))Q{z:p(bl,zJ)<r,}.

Thus the disks A(è,., (^)rj(l - |6,.|2)) = A(è,,j,), i = 1,2, . . . ,   are disjoint.

Hence

(1 - bfflmi2 < 16,7-V2 f       (1 -|è,|2)|/(z)|2rfx dy
Jà(bi,si)

(2)

<327T-1rí-2/        (l-\z\2)\f(z)\2dxdy.
JA(b¡,s¡)

By summing (2) over all i, we obtain Lemma 2.

Proof of Lemma 1. It clearly suffices to prove Lemma 1 for p = 2 (cf. [2,

p. 152]). Let B be the Blaschke product vanishing at [a¡: i = 1,2, . . . }. Let

/ E H2. Then \\{BjJ\\2,i < P/lb = ll/ll* But

\(Bf)'(a,)\ =\B'(a,)f(ai)\ = (l -|a,.|2)">,.(a,.)/(a,.)|.

Thus

2(1 -|a,.|2)|/(a,.)|2=2|5,(«,)r2(l -K|2)3|(5/)'(«,)|2

<325-4||(5/)'||21<326-4||il|2.

This completes the proof of Lemma 1 and of equality (1).
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