A SHORT PROOF OF AN INEQUALITY OF CARLESON'S

CHARLES W. NEVILLE

Abstract. We give a simple proof that if \(a_i, i = 1, 2, \ldots, \) is a uniformly separated sequence in the unit disk, then
\[
\sum (1 - |a_i|^2)|f(a_i)|^p < K\|f\|_p^p
\]
for all \(f \in H^p \) and \(1 < p < \infty \).

Let \(\mathbb{C} \) denote the complex plane, \(\Delta(a,r) \) denote the disk \(\{ z: |z - a| < r \} \), and let \(H^p \) denote Hardy class \(H^p \) of \(\Delta(0,1) \) for \(1 < p < \infty \). The key step in the duality proof of the Carleson interpolation theorem is to prove

Lemma 1. Let \(a_i, i = 1, 2, \ldots, \) be a uniformly separated sequence in \(\Delta(0,1) \). Then
\[
\sum (1 - |a_i|^2)|f(a_i)|^p < K\|f\|_p^p
\]
for all \(f \in H^p \) and \(1 < p < \infty \).

If \(|B_i(a_i)| > \delta \) for all \(i \), where \(B_i \) is the Blaschke product vanishing on \(\{ a_j: j \neq i \} \), then the best value of \(K \) is \(C\ln(1/\delta) \), which comes from Carleson's proof [1] tempered with maximal functions. (I want to thank the referee for pointing this out to me.) We shall give a much simpler proof that \(K < \infty \), although our value for \(K \) will not be as good. We shall show that if \(0 < \delta < \frac{1}{2} \), then we may choose
\[
K = 32/\delta^2.
\]

We shall need the Hilbert space \(A^{2,1} = \{ f \text{ analytic on } \Delta(0,1): \pi^{-1}f_{\Delta(0,1)}|f(z)|^2(1 - |z|^2) \ dx \ dy < \infty \} \). The \(A^{2,1} \) norm of \(f(z) = \Sigma c_n z^n \) is easily seen to be \(\Sigma |c_n|/(n + 1)(n + 2) \). Clearly \(A^{2,1} = \{ f': f \in H^2 \} \) and \(\| f' \|_{2,1} < \| f \|_2 \). The following lemma, concerning sums of squares of normalized point evaluations in \(A^{2,1} \), was given in slightly different form by Shapiro and Shields [4, p. 529].

Lemma 2. Let \(b_i, i = 1, 2, \ldots, \) be a sequence in \(\Delta(0,1) \). Suppose \(0 < \eta < \frac{1}{2} \) and \(|b_i - b_j|/|1 - b_i b_j| > \eta \) if \(i \neq j \). Then
\[
\sum (1 - |b_i|^2)^3|f(b_i)|^2 < 32\eta^{-2}\|f\|_{2,1}^2
\]
for all \(f \in A^{2,1} \).

Received by the editors June 11, 1976 and, in revised form, November 24, 1976.

AMS (MOS) subject classifications (1970). Primary 30A04, 30A80, 30A78.

Key words and phrases. Carleson interpolation theorem, \(H^p \) space, Blaschke product, \(A^{2,1} \) space, uniformly separated sequence.

I would like to thank L. A. Rubel for interesting me in interpolation problems, and Carleton University for making it possible for me to attend a series of lectures he gave there.

© American Mathematical Society 1977
PROOF. A little computation using the conformal invariance of the pseudo-
hyperbolic metric $\rho(b_i, b_j) = |b_i - b_j|/|1 - b_i b_j|$ shows that
$$\Delta(b_i, \left(\frac{1}{4}\right)\eta(1 - |b_i|^2)) \subseteq \{z: \rho(b_i, z_j) < \eta\}.$$ Thus the disks $\Delta(b_i, \left(\frac{1}{4}\right)\eta(1 - |b_i|^2)) = \Delta(b_i, s_i)$, $i = 1,2, \ldots$, are disjoint. Hence
\[
(1 - b_i^2)^3 |f(b_i)|^2 < 16\pi^{-1}\eta^{-2} \int_{\Delta(b_i,s_i)} (1 - |b_i|^2)|f(z)|^2 dx \, dy
\]
(2)
\[
< 32\pi^{-1}\eta^{-2} \int_{\Delta(b_i,s_i)} (1 - |z|^2)|f(z)|^2 dx \, dy.
\]
By summing (2) over all i, we obtain Lemma 2.

PROOF OF Lemma 1. It clearly suffices to prove Lemma 1 for $p = 2$ (cf. [2, p. 152]). Let B be the Blaschke product vanishing at $\{a_i: i = 1,2, \ldots \}$. Let $f \in H^2$. Then $\|{(Bf)}^\prime\|_{2,1} < \|Bf\|_2 = \|f\|_2$. But
$$|(Bf)'(a_i)| = |B'(a_i) f(a_i)| = (1 - |a_i|^2)^{-1} |B_i(a_i)f(a_i)|.$$ Thus
$$\sum (1 - |a_i|^2)^2 |f(a_i)|^2 = \sum |B_i(a_i)|^{-2} (1 - |a_i|^2)^3 |(Bf)'(a_i)|^2
\[
< 32\delta^{-4}\|{(Bf)}^\prime\|_{2,1}^2 < 32\delta^{-4}\|f\|_2^2.
\]
This completes the proof of Lemma 1 and of equality (1).

REFERENCES

DEPARTMENT OF MATHEMATICS, CENTRAL CONNECTICUT STATE COLLEGE, NEW BRITAIN, CONNECTICUT 06050