ON VECTOR STATES AND SEPARABLE C*-ALGEBRAS

JOEL ANDERSON

ABSTRACT. It is proved that the set of states on a separable C*-subalgebra of the Calkin algebra may be simultaneously extended to a set of equivalent, orthogonal, pure states on the Calkin algebra.

Let \mathfrak{A} denote a separable C*-algebra of operators acting on a separable Hilbert space \mathcal{H} and suppose that \mathfrak{A} contains the identity. In [2] Glimm proved that the weak*-closure of the set of vector states on \mathfrak{A} (i.e., states on \mathfrak{A} of the form $\omega_x(A) = (Ax, x)$, where $A \in \mathfrak{A}$ and x is a unit vector in \mathcal{H}) contains the set $\mathcal{S}(\mathfrak{A})$ of all states on \mathfrak{A} which annihilate $\mathfrak{A} \cap \mathcal{K}(\mathcal{H})$. ($\mathcal{K}(\mathcal{H})$ denotes the compact operators acting on \mathcal{H}.) Voiculescu used this result in [3] in the proof of his noncommutative Weyl-von Neumann theorem. In this note Voiculescu's theorem shall be used to obtain a stronger version of Glimm's result: There is a sequence $\{\omega_n\}$ of vector states, induced by an orthonormal set of vectors in \mathcal{H}, such that $\mathcal{S}(\mathfrak{A})$ is contained in the weak*-closure of $\{\omega_n\}$. (It should be noted that Glimm's theorem holds without any separability assumptions so that the theorem to be proved here is stronger only in the separable case.)

This theorem, together with a theorem from [1], yields a somewhat surprising corollary: There is a set S consisting of equivalent, orthogonal, pure states on $\mathcal{B}(\mathcal{H})$, the bounded linear operators on \mathcal{H}, such that every state in $S(\mathfrak{A})$ is a restriction of a state in S. In particular, if f is any state on a separable C*-subalgebra of the Calkin algebra, $\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$, then there is a pure state g on the Calkin algebra which extends f.

To prove the theorem, note that since \mathfrak{A} is separable, $S(\mathfrak{A})$ is weak*-metrizable and compact and so contains a countable dense set, say $\{f_n\}$.

Let p denote the canonical homomorphism of $\mathcal{B}(\mathcal{H})$ onto the Calkin algebra. Then each state f_n determines a state g_n on $p(\mathfrak{A})$ such that $f_n = g_n \circ p$. Let $\{\pi_n, \mathcal{H}_n, x_n\}$ denote the G.N.S. representation of $p(\mathfrak{A})$ constructed from g_n. Then π_n is a *-homomorphism of $p(\mathfrak{A})$ into $\mathcal{B}(\mathcal{H}_n)$ and $f_n(A) = g_n \circ p(A) = (\pi_n \circ p(A)x_n, x_n)$ for each A in \mathfrak{A}. Let π denote the representation of $p(\mathfrak{A})$ obtained by taking the direct sum of the π_n's, so that π maps $p(\mathfrak{A})$ into $\mathcal{B}(\Sigma \oplus \mathcal{H}_n)$. By Voiculescu's theorem, there is a unitary transformation U of

Received by the editors September 30, 1976.

AMS (MOS) subject classifications (1970). Primary 46L05.

Key words and phrases. C*-algebra, state, pure state, vector state, Calkin algebra.

© American Mathematical Society 1977
\[K \rightarrow K \oplus \sum \oplus K_n \] such that \(A = U^*(A \oplus \pi \circ p(A))U \in K(K) \) for all \(A \) in \(\mathcal{A} \). Write \(e_n = U^*x_n \) for \(n = 1, 2, \ldots \). Then \(\{e_n\} \) is an orthonormal sequence in \(K \) and the vector states \(\omega_n = \omega_{e_n}, n = 1, 2, \ldots \), have the desired property. Indeed, if \(f \in \mathcal{S}(\mathcal{A}) \), choose an infinite subsequence \(\{f_n\} \) of \(\{f_n\} \) which converges to \(f \) in the weak*-topology. Fix \(A \in \mathcal{A} \). Then

\[
f(A) = \lim_j f_n(A) = \lim_j g_{\pi_n} \circ p(A) = \lim_j \left(\pi_n \circ p(A)x_n, x_n \right)
\]

\[
= \lim_j \left(U^*(A \oplus \pi \circ p(A))Ue_n, e_n \right) = \lim_j \omega_n(A) + \lim\left(Ke_n, e_n\right),
\]

where \(K \) is the compact operator \(U^*(A \oplus \pi \circ p(A))U - A \). Since \(\{e_n\} \) converges weakly to zero and \(K \) is compact, \(\|K e_n\| \to 0 \) as \(j \to \infty \). Hence, \(f(A) = \lim_j \omega_n(A) \) for all \(A \) in \(\mathcal{A} \), as desired.

To prove the corollary, choose a sequence \(\{\omega_n\} \) of vector states induced by an orthonormal sequence \(\{e_n\} \) such that each \(f \) in \(\mathcal{S}(\mathcal{A}) \) is the weak*-limit of a subsequence of the \(\omega_n \)'s. Fix a free ultrafilter \(\mathcal{U} \) on the natural numbers \(\mathbb{N} \) and define a state \(g \) on \(\mathcal{B}(\mathcal{K}) \) by \(g(T) = \lim_{\mathcal{U}} \omega_n(T) \). For each permutation \(\alpha \) of \(\mathcal{N} \) define a unitary operator \(U_\alpha \) on \(K \) by \(U_\alpha e_n = e_{\alpha(n)}, n = 1, 2, \ldots \), and define the state \(g_\alpha \) on \(\mathcal{B}(\mathcal{K}) \) by \(g_\alpha(T) = g(U_\alpha^*TU_\alpha) = \lim_{\mathcal{U}} \omega_{\alpha(n)}(T) \). (Adding vectors if necessary, we may assume that \(\{e_n\} \) is a basis for \(K \).) Then the set \(\mathcal{S} = \{ g_\alpha : \alpha \text{ is a permutation of } \mathcal{N} \} \) has the desired properties. Indeed, by [1, Corollary 3] \(g \), and hence each \(g_\alpha \), is a pure state on \(\mathcal{B}(\mathcal{K}) \) (because \(\{e_n\} \) is an orthonormal sequence). Thus, \(\mathcal{S} \) consists of equivalent pure states. Further, if \(\alpha \) and \(\beta \) are permutations of \(\mathcal{N} \) such that \(g_\alpha \) and \(g_\beta \) are distinct elements of \(\mathcal{S} \), then there are disjoint subsets \(\sigma \) and \(\tau \) of \(\mathcal{N} \) such that \(\alpha^{-1}(\sigma) \subseteq \mathcal{U} \) and \(\beta^{-1}(\tau) \subseteq \mathcal{U} \). If \(D \) is defined by \(D e_n = e_n \) for \(n \in \sigma \), \(De_n = -e_n \) for \(n \in \tau \) and \(De_n = 0 \) otherwise, then \(D \in \mathcal{B}(\mathcal{K}) \), \(\|D\| = 1 \) and \(g_\alpha(D) - g_\beta(D) = 2 \). Hence, \(\|g_\alpha - g_\beta\| = 2 \) and the elements of \(\mathcal{S} \) are orthogonal. Finally, if \(f = \lim_{\mathcal{U}} \omega_n \) is a state in \(\mathcal{S}(\mathcal{A}) \), then for some permutation \(\alpha \) of \(\mathcal{N} \), \(\alpha^{-1}\{n_1, n_2, \ldots \} \subseteq \mathcal{U} \) and

\[
g_\alpha(A) = \lim_{\mathcal{U}} \omega_{\alpha(n)}(A) = \lim_j \omega_n(A) = f(A)
\]

for \(A \in \mathcal{A} \). The proof is complete.

Note that the choice of \(\mathcal{S} \) in the proof above is far from unique. In fact, there are \(2^c \) disjoint sets of states on \(\mathcal{B}(\mathcal{K}) \) which have the desired properties. (As usual, \(c \) denotes the cardinality of the continuum.) Furthermore, by altering the proof somewhat, it is possible to choose a set \(\mathcal{S}' \) of disjoint (i.e., inequivalent) pure states on \(\mathcal{B}(\mathcal{K}) \) such that \(\mathcal{S}' \mid_\mathcal{A} = \mathcal{S}(\mathcal{A}) \).

As an example, take \(\mathcal{A} \) to be an isometric isomorphic image of \(C(0, 1) \), the continuous functions on the unit interval, in \(\mathcal{B}(\mathcal{K}) \). Then \(\mathcal{A} \cap \mathcal{K}(\mathcal{K}) = \{0\} \) and \(\mathcal{S}(\mathcal{A}) \) is the entire set of states on \(\mathcal{A} \). Hence, every state on \(\mathcal{A} \) (including integration) extends to a pure state on \(\mathcal{B}(\mathcal{K}) \).

In conclusion, it seems worth noting that the fact that states in \(\mathcal{S}(\mathcal{A}) \) extend to pure states on \(\mathcal{B}(\mathcal{K}) \) may be proved without recourse to Voiculescu's theorem. Indeed, by a theorem of Wils [4], if \(f \in \mathcal{S}(\mathcal{A}) \), then \(f = \lim_{\mathcal{U}} \omega_{x_n} \).
where \mathcal{U} is a free ultrafilter on the natural numbers and (x_n) is a sequence of unit vectors in \mathcal{K} such that $\lim_{n}(x_n, y) = 0$ for all y in \mathcal{K}. Straightforward arguments using the separability of \mathcal{K} can then be used to show that $f = \lim_{n} \omega_{x_n}$, where (e_n) is an orthonormal sequence in \mathcal{K}. The proof is completed, as before, by invoking Corollary 3 of [1].

REFERENCES

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802