A REMARKABLE CLASS OF CONTINUED FRACTIONS

WILLIAM W. ADAMS AND J. L. DAVISON

Abstract. For any irrational number α and integer $a > 1$, the continued fraction of $(a - 1)\Sigma_{r=1}^{\infty}1/\alpha^{r+1}$ is computed explicitly in terms of the continued fraction of α.

1. Introduction. In [2], the second author proved the remarkable result that $\Sigma_{r=1}^{\infty}1/2^{r+1}$ where $\alpha = (1 + \sqrt{5})/2$ has as its continued fraction $[0, 1, t_2, t_3, \ldots]$ where $t_n = 2^{n-2} (n > 2)$ and f_n is the nth Fibonacci number. In this paper we generalize this result.

Let $\alpha > 0$ be any real number and let $a > 1$ be an integer. Define

$$S_0(a) = (a - 1)\sum_{r=1}^{\infty} \frac{1}{\alpha^{r+1}}.$$

Consider the continued fraction for α^{-1},

$$\alpha^{-1} = [a_0; a_1, a_2, \ldots].$$

(We use the usual continued fraction notation, say for example in [3].) Let p_n/q_n denote the convergents of α^{-1}. We adopt the convention throughout this paper that $p_0 = 0, q_0 = 1, q_{-2} = 1, q_{-1} = 0$. Then for all $n > 0$,

$$p_n = a_n p_{n-1} + p_{n-2} \quad \text{and} \quad q_n = a_n q_{n-1} + q_{n-2}.$$

Define another sequence of integers

$$t_n = a_0a_n, \quad t_n = (a^n - a^{n-2})/(a^{n-1} - 1) \quad \text{for } n > 1.$$

(t_n is an integer since $q_{n-1}|q_n - q_{n-2}$.)

Theorem. If α is irrational and $\alpha > 0$, then

$$S_0(\alpha) = [t_0; t_1, t_2, \ldots].$$

We will also give explicit formulas for convergents P_n/Q_n of $S_0(\alpha)$. For this we need to define for real x,

$$[x]' = \begin{cases} [x], & \text{if } x \text{ is not an integer,} \\ x - 1, & \text{if } x \text{ is an integer,} \end{cases}$$

Received by the editors November 30, 1976.

1 The results in this paper were obtained independently by the two authors. The second author would like to thank M. Mendes France for pointing out that the "2" in his first paper could be replaced by a variable "a".

2 Any a with $|a| > 1$ yields the same result.
the largest integer < x. Further define

\[(3)\quad S'_a(x) = (a - 1) \sum_{r=1}^{\infty} \frac{1}{a^{1/r}}.\]

(Of course, for irrational \(a\), \(S'_a(x) = S'_a(\alpha)\).)

PROPOSITION. If \(\alpha\) is irrational, \(p_n/q_n\) are the convergents of \(\alpha^{-1}\) and \(p_n/Q_n\) are the convergents of \(S'_a(\alpha)\), then for \(n > 0\),

\[
\frac{P_n}{Q_n} = \begin{cases}
S'_a(q_n/p_n), & n \text{ even}, \\
S_a(q_n/p_n), & n \text{ odd}
\end{cases}
\]

(if \(p_0 = 0\) interpret \(S'_a(q_0/p_0) = 0\)).

Also

\[(4)\quad P_n = \begin{cases}
\sum_{i=1}^{p_n} a^{q_{i-1}q_n/p_n}, & n \text{ even}, \\
\sum_{i=1}^{p_n} a^{q_{i-1}q_n/p_n}, & n \text{ odd},
\end{cases}
\]

and

\[(5)\quad Q_n = (a^{q_n} - 1)/(a - 1).\]

In the last section we observe that \(S_a(\alpha)\) is transcendental.

2. **Lemmas.** We assume throughout that \(\alpha\) is irrational.

LEMMA 1. Assume \(1 < r < p_{n+1}\) and \(n > 0\). Then

\[
[r\alpha] = \begin{cases}
[rq_n/p_n], & n \text{ even}, \\
[rq_n/p_n], & n \text{ odd}
\end{cases}
\]

(for \(n = 0\) assume \(p_0 \neq 0\)).

PROOF. The \(n\)th convergent to \(\alpha^{-1}\) is \(p_n/q_n\) and thus \(q_n/p_n\) is the \(n + 1\) or \(n - 1\) (depending on whether \(a_0 = 0\) or \(a_0 \neq 0\), respectively) convergent of \(\alpha\). Thus

\[\alpha = q_n/p_n + \theta_n/p_n p_{n+1},\]

where \(0 < \theta_n < 1\) if \(n\) is odd and \(-1 < \theta_n < 0\) if \(n\) is even. Hence, \(1 < r < p_{n+1}\) implies

\[r\alpha = rq_n/p_n + \theta'_n/p_n,\]

where \(0 < \theta'_n < 1\) if \(n\) is odd and \(-1 < \theta'_n < 0\) if \(n\) is even. If \(p_n \nmid r\), then there is no integer between \(rq_n/p_n\) and \(r\alpha\) and

\[
[r\alpha] = [rq_n/p_n] = [rq_n/p_n].
\]

If \(p_n \nmid r\), then

\[
[r\alpha] = rq_n/p_n + [\theta'_n/p_n],
\]

which immediately gives the desired result.
Lemma 2. Assume $1 < r < p_n$ and $n > 0$. Then

$$\left\lfloor \frac{rq_n/p_n}{p_n} \right\rfloor = \left\lfloor \frac{rq_{n-1}/p_{n-1}}{p_{n-1}} \right\rfloor', \quad n \text{ odd},$$

$$\left\lfloor \frac{rq_n/p_n}{p_n} \right\rfloor' = \left\lfloor \frac{rq_{n-1}/p_{n-1}}{p_{n-1}} \right\rfloor, \quad n \text{ even}.$$

Proof. Immediate from Lemma 1.

Lemma 3.

$$\lim_{n \to \infty} S_a \left(\frac{q_n}{p_n} \right) = \lim_{n \to \infty} S_a' \left(\frac{q_n}{p_n} \right) = S_a(\alpha).$$

Proof. If n is even, we have by Lemma 1,

$$\left| S_a' \left(\frac{q_n}{p_n} \right) - S_a(\alpha) \right| = (a - 1) \sum_{r=p_{n+1}}^{\infty} \left| a^{-\{rq_n/p_n\}' - a^{-\{r\alpha\}}} \right|$$

and it is trivial to see that this tends to zero. The situation is similar if n is odd.

Lemma 4.

(i)

$$S_a \left(\frac{q_n}{p_n} \right) = \frac{a - 1}{a^{q_n} - 1} \sum_{t=1}^{p_n} a^{q_n - \{rq_n/p_n\} t}.$$

(ii)

$$S_a' \left(\frac{q_n}{p_n} \right) = \frac{a - 1}{a^{q_n} - 1} \sum_{t=1}^{p_n} a^{q_n - \{rq_n/p_n\} t}.$$

Proof. In definition (3) of $S_a'(q_n/p_n)$, set $r = kp_n + t$, $1 < t < p_n$, $0 < k < \infty$. Thus

$$S_a' \left(\frac{q_n}{p_n} \right) = (a - 1) \sum_{k=0}^{\infty} \sum_{t=1}^{p_n} a^{-\{rq_n/p_n\} t} a^{-kq_n}$$

$$= (a - 1) \sum_{t=1}^{p_n} a^{-\{rq_n/p_n\} t} \sum_{k=0}^{\infty} a^{-kq_n}$$

$$= (a - 1) \left(\sum_{t=1}^{p_n} a^{-\{rq_n/p_n\} t} \right) \left(1 - \frac{1}{a^{q_n}} \right)^{-1}$$

which is the desired result. $S_a(q_n/p_n)$ is similar.

3. Proof of the theorem and proposition. From Lemmas 3 and 4 we see that it suffices to show that the quantities on the right-hand sides of (4) and (5) satisfy the appropriate recursion relations. Let P'_n denote the right side of (4) and Q'_n denote the right side of (5) ($n > 0$).

Set $Q'_{-2} = 1$, $Q'_{-1} = 0$. We need that for all $n > 0$,

$$Q'_n = t_n Q'_{n-1} + Q'_{n-2},$$

where t_n is given in (2). For $n = 0$ this is clear. For $n = 1$,
For $n > 2$, we have by induction
\[
t_nQ_n' + Q_n'' = \frac{a_{n-1} - a_{n-2}}{a_{n-1} - 1} + \frac{a_{n-2} - 1}{a - 1} = \frac{a_n - 1}{a - 1} = Q_n'
\]
as desired.

Set $P_n' = 0$, $P_{n-1}' = 1$. We need that for all $a_i > 0$,
\[
(6) \quad P_n' = t_n P_{n-1} + P_n'' - 1.
\]
If $a_0 = 0$, then $P_n' = \sum_{i=1}^{p_0} a_q^{i-\{q_0/p_0\}'} = \sum_{i=1}^{p_0} a^{i-\{i/a_0\}'} = a_0a$, whereas
\[
\sum_{i=1}^{p_0} a_0^{i-\{i/a_0\}'} = a_0a.
\]
(If $a_0 = 0$, this is still valid.)

If $n = 1$,
\[
t_1P_0' + P_0'' = a_0a \frac{a_q - a_q^{-1}}{a_q - 1} + 1 = a_0a \frac{a_1 - 1}{a - 1} + 1.
\]
Also
\[
P_1' = \sum_{i=1}^{p_1} a_q^{i-\{i/a_0\}'} = \sum_{i=1}^{p_1} a_q^{i-\{q_0/p_0\}'} + 1
\]
using Lemma 2. (If $a_0 = 0$ the result is clear.) It is easily seen that the numbers $\{i/a_0\}'$, $1 \leq i < p_1 - 1 = a_1a_0$, give a_0 repetitions of each of the numbers $0, 1, 2, \ldots, a_1 - 1$. Hence
\[
P_1' = a_0 \sum_{j=0}^{a_1-1} a_1^{-\{j/a_1\}'} + 1
\]
which is the same as (7).

Now suppose $n > 1$. We verify (6) in the case that n is even; the case where n is odd is similar. From Lemma 2 and (4)
\[
P_n' = \sum_{i=1}^{p_n-1} a_q^{i-\{q_0-1/p_0-1\}'} + a.
\]
Set $t = i p_{n-1} + j$, $1 \leq j \leq p_{n-1} - 1$. Then
\[
1 \leq t < p_n - 1 = a_n p_{n-1} + p_{n-2} - 1
\]
if and only if
\[
0 \leq i < a_n - 1 \quad \text{and} \quad 1 \leq j < p_{n-1}
\]
or
\[
i = a_n \quad \text{and} \quad 1 \leq j < p_{n-2} - 1.
\]
Thus
\[
P'_n = \sum_{i,j} a^{q_n - iq_{n-1} - [q_{n-1}/p_{n-1}]} + a
\]
\[
= \sum_{j=1}^{p_{n-1}} a^{q_n - [q_{n-1}/p_{n-1}]} \sum_{i=0}^{a_n - 1} a^{-iq_{n-1}} + \sum_{j=1}^{p_{n-2}-1} a^{q_n - q_{n-1} - [q_{n-1}/p_{n-1}]} + a
\]
\[
= \frac{a^{q_n} - q_{n-1} - 1}{a^{q_{n-1} - 1}} \sum_{j=1}^{p_{n-1}} a^{q_n - [q_{n-1}/p_{n-1}]} + \sum_{j=1}^{p_{n-2}-1} a^{q_n - [q_{n-1}/p_{n-1}]} + a
\]
\[
= \frac{a^{q_n} - q_{n-2}}{a^{q_{n-1} - 1}} \sum_{j=1}^{p_{n-1}} a^{q_n - [q_{n-1}/p_{n-1}]} + \sum_{j=1}^{p_{n-2}-1} a^{q_n - [q_{n-2}/p_{n-2}]} + a \quad \text{(by Lemma 2)}
\]
\[
= t_n P'_{n-1} + P'_{n-2}
\]

by induction. The proof is complete.

4. The transcedence of \(S_\alpha(\alpha) \). From Roth's theorem [1, p. 104] we have that if \(|q\beta - p| < 1/q^{1.4}\) has an infinite number of integer solutions \(q, p\), then \(\beta\) is transcendental. If \(A_n/B_n\) are the convergents of \(\beta\) then

\[
|B_n\beta - A_n| < 1/B_{n+1} < 1/B_n^{1.4}
\]

provided \(\log B_{n+1}/\log B_n > 1.4\). For \(B_n = Q_n\) above we have \(\log Q_{n+1}/\log Q_n \sim q_{n+1}/q_n\) \((n \to \infty)\).

It is easily checked that \(\max(q_{n+1}/q_n, q_n/q_{n-1}) > 1.5\). Thus

Theorem. \(S_\alpha(\alpha) \) is transcendental for all irrationals \(\alpha\).

References

Department of Mathematics, University of Maryland, College Park, Maryland 20742
Department of Mathematics, Laurentian University, Sudbury, Ontario, Canada