A COUNTABLE SELF-INJECTIVE RING IS QUASI-FROBENIUS

JOHN LAWRENCE

ABSTRACT. A countable dimensional self-injective algebra is Artinian. There is an application to self-injective twisted group algebras.

It has been known for some time that a countable self-injective ring is semilocal (see for example [8]). In this paper we show that such a ring is in fact quasi-Frobenius. Special cases of this result have been proved previously, for example if the ring is also regular [3] or if it is a group algebra [8]. My thanks to Ken Louden for his help in the preparation of this paper.

Unless stated otherwise, all rings are associative with a unity. If S is a subset of a ring R, we denote its left annihilator in R by $l_R(S)$.

Theorem 1 (Faith [1]). A ring is quasi-Frobenius if it is right self-injective and satisfies the descending chain condition on left annihilators.

Proposition 2. Let R be a subring of S. Suppose that S_S is injective, RS is flat and SR is free. Then RR is injective.

Proof. The proof is left to the reader.

Theorem 3. Every countable subring of a quasi-Frobenius ring is contained in a countable quasi-Frobenius subring. Conversely, if every countable subring of a ring is contained in a quasi-Frobenius subring, then the ring is quasi-Frobenius.

Proof. Suppose first that T is a quasi-Frobenius ring and A is a countable subring. We construct a sequence of subrings $A = R_0 \subset R_1 \subset R_2 \subset \cdots \subset T$ inductively as follows. Given R_k, consider all n-tuples $\{a_1, \ldots, a_n\}$ of elements of R_k as n ranges over the positive integers. If $a_n \in a_1 T + \cdots + a_{n-1} T$ choose $x_1, x_2, \ldots, x_{n-1} \in T$ so that $a_n = a_1 x_1 + \cdots + a_{n-1} x_{n-1}$. If $a_n \not\in a_1 T + \cdots + a_{n-1} T$, choose $x_n \in T$ so that $x_i a_n = 0$, $i = 1, 2, \ldots, n - 1$, and $x_n a_n \neq 0$. Now do the same for the left ideal generated by $a_1, a_2, \ldots, a_{n-1}$. Let R_{k+1} be the subring of T generated by R_k and all the x's obtained. Let $R = \bigcup_{i=1}^{\infty} R_i$. Clearly $A \subset R$ and R is a countable subring, so
we need only show that R is quasi-Frobenius.

As T is right and left Artinian, R satisfies ACC and DCC on right and left annihilators. If I is a finitely generated right ideal of R, then, by construction, $r_R(I_R(I)) = I$. A dual result holds for left ideals. Thus R satisfies ACC on finitely generated right and left ideals and so is right and left Noetherian. As R satisfies DCC on right and left annihilators it is right and left Artinian. Since R is right and left Artinian and satisfies the 'annihilator condition' [9, p. 276], R is quasi-Frobenius.

Now suppose that every countable subring of T is contained in a quasi-Frobenius subring. Then T is clearly right and left Artinian. In order to prove that T is right self-injective, we need only show that for all finitely generated right ideals I and J we have $r(I(I)) = I$ and $l(I \cap J) = l(I) + l(J)$, (see [9, p. 274]). However, if these conditions were not satisfied we could construct a countable subring A such that for any subring between A and T these would not be satisfied, and this contradicts the hypothesis that A is a subring of a quasi-Frobenius ring.

Theorem 4. Let R be a right self-injective ring and let $\{J_i\}_{i \in \Psi}$ be a descending chain of left annihilators, well-ordered by inclusion. Then the cardinality of Ψ is less than the cardinality of R.

Proof of the theorem. Suppose that the cardinality of Ψ is greater than or equal to the cardinality of R. We may suppose that Ψ is a set of ordinals. Let Φ be the set of ordinals strictly less than the cardinality of Ψ, thus $|\Phi| = |R|$, and we consider the descending chain of annihilators $\{J_i\}_{i \in \Phi}$. Suppose $R = \{a_j\}_{j \in \Phi}$. Suppose J_i annihilates the right ideal I_i on the left. Let $J = \cap_{i \in \Phi} J_i$ and let $I = \cup_{i \in \Phi} I_i$. Clearly J is the left annihilator of I.

Consider the following proposition:

(P) For each ordinal $\alpha \in \Phi$ there is an element $b_\alpha \in I$ and an R-module map $\varphi_\alpha: \sum_{\rho < \alpha} b_\rho R \to R$ such that

1. If $\beta < \alpha$, then φ_α restricted to $\sum_{\rho < \beta} b_\rho R$ is φ_β.
2. $\varphi_\alpha(b_\alpha) \neq a_\alpha b_\alpha$.

We prove (P) by transfinite induction. For $\alpha = 1$, choose $c_1 \in J_1$ so $c_1 - a_1 \not\subset J$. Then choose $b_1 \in I$ so $(c_1 - a_1)b_1 \neq 0$. Let φ_1 be left multiplication by c_1.

Now suppose we have proved (P) for all ordinals less than δ. We have a right module homomorphism

$$\varphi'_\delta: \sum_{\rho < \delta} b_\rho R \to R,$$

simply given by the union of the φ_ρ, $\rho < \delta$. As R is right self-injective, φ'_δ is given by left multiplication, say by d_δ. Let x be an ordinal large enough so $\{b_j\}_{j < x} \subset I_x$. Choose $c_\delta \in J_x$ so $c_\delta + d_\delta - a_\delta \not\subset J$, and then choose b_δ so that $(c_\delta + d_\delta - a_\delta)b_\delta \neq 0$. Define φ_δ to be left multiplication by $c_\delta + d_\delta$. Thus (P) is proved by transfinite induction.

Let $\varphi: \sum_{\rho \in \Phi} b_\rho R \to R$ be the right R-module map defined by the union of
the \(\varphi_p \). Then for all \(\alpha \in \Phi \), \(\varphi \) restricted to \(\sum_{p \leq \alpha} b_p R \) is simply \(\varphi_\alpha \). Therefore \(\varphi(b_\alpha) = \varphi_\alpha(b_\alpha) \neq a_\alpha b_\alpha \); hence, \(\varphi \) is not given by left multiplication, contradicting the hypothesis that \(R \) is right self-injective. This completes the proof of the theorem.

Proposition 5. Let \(A \) be an infinite set. Then there is a totally ordered (by inclusion) subset of the power set of cardinality \(2^{|A|} \).

The above proposition allows us to construct the following example. Let \(F \) be a countable field and let \(A \) be an infinite set of ordinals less than a given cardinality. Let \(R_A = \bigoplus_{\alpha \in A} F \) be the direct product of \(A \) copies of \(F \). Then \(R \) is self-injective and \(|R_A| = 2^{|A|} \). Also, \(R_A \) has a well-ordered descending chain of annihilators of cardinality \(|A| \) and a totally ordered descending chain of annihilators of cardinality \(2^{|A|} \). This example shows that 'well ordered' cannot be replaced by 'totally ordered' in the theorem.

Theorem 6. Let \(T \) be a right self-injective ring such that every countable subring is contained in a countable subring \(R \), where \(T \) is free as a right \(R \)-module and flat as a left \(R \)-module. Then \(T \) is quasi-Frobenius.

Proof. By Proposition 2 and Theorem 3, it is enough to show that a countable right self-injective ring is quasi-Frobenius.

Corollary 7. A countable dimensional self-injective algebra over a field is quasi-Frobenius.

Corollary 8 (Renault). A group algebra is self-injective only if the group is finite.

Proof. A self-injective group algebra is quasi-Frobenius, hence Artinian, so the group is finite.

Corollary 9. A ring is quasi-Frobenius if and only if every countable subring is contained in a countable self-injective subring.

Proof. This is an easy consequence of Theorems 3 and 4.

If we look at rings without a unity, then most of the above theorems fail to hold. Let \(S \) denote the semigroup \(\{ e_1, e_2, \ldots : e_i e_j = e_i \} \). If \(F \) is any field, then the semigroup ring \(FS \) is left but not right self-injective and is neither right nor left Artinian.

Recall that a twisted group algebra \(F^t G \) is defined by a 2-cocycle \(t: G \times G \to F - \{0\} \), where \(G \) is a group and \(F \) is a field, and where we define \(\tilde{g} \cdot \tilde{h} = t(g, h) \tilde{g} \tilde{h} \). Define the cocycle subfield of \(F \) to be the subfield generated by the image of \(t \). Passman has constructed an example of an infinite group such that for certain fields the twisted group algebra is a field. In the same paper [6], Passman proved that if \(F \) is algebraically closed and uncountable and \(F^t G \) is Artinian, then \(G \) is finite. We use his idea in the following theorem.

Theorem 10. Suppose that \(F^t G \) is a self-injective twisted group algebra such
that F is a proper extension of the algebraic closure of the cocycle subfield. Then G is finite.

Proof. If G is not finite, then we may assume that it is countably infinite [7], hence $F'G$ is quasi-Frobenius. Let $\Delta(G)$ denote the set of elements in G with finitely many conjugates. Then $F'\Delta(G)$ is self-injective, so $\Delta(G)$ is finite [7]. Now using an argument similar to Passman's [6, p. 648] we may assume that $F'G$ is Artinian and $\Delta(G) = \langle 1 \rangle$. Let K denote the cocycle subfield of F and let L denote the algebraic closure of K in F. Clearly

$$F'G \cong F \otimes_L L'G,$$

and as F is not algebraic over L, $L'G$ must be an algebraic L-algebraic [4]. By a Theorem of Passman, $L'G$ is a semiprime [5, p. 424], so $L'G$ is a semiprime Artinian algebraic algebra over an algebraically closed field. Therefore, G is finite.

References

7. A. Reid, Twisted group algebras which are Artinian, perfect or self-injective, Bull. London Math. Soc. 7 (1975), 166–170.

Department of Mathematics, University of Chicago, Chicago, Illinois 60637

Current address: University of Waterloo, Waterloo, Ontario, Canada N2L 3G1