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RECURSIVELY ENUMERABLE SETS'

RICHARD A. SHORE

Abstract. We answer two questions of A. Nerode and give information

about how the structure of S *, the lattice of r.e. sets modulo finite sets, is

determined by various subclasses.

Theorem. If G* is any nontrivial recursively invariant subclass of S *, then

any automorphism of S* is determined uniquely by its action on Q*.

THEOREM. If G* is the class of recursive sets modulo finite sets or 911* C

6* C S * (91L* = maximal sets, S * = simple sets) then there is an automor-

phism of (the lattice generated by) G* which does not extend to one of S *.

One of the major areas of concern in recursion theory has traditionally

been the structure of recursively enumerable sets as a lattice, S, and, more

particularly, that of S *, the lattice modulo finite sets. Formally this point of

view was introduced in Myhill [1956], but much of the earlier work on r.e. sets

can now be viewed in this light as well. Much important work in this area has

been done by exploiting and analyzing a common algebraic tool: the group of

automorphisms of the lattice. A general introduction to the study of S * can

be found in Chapter 12 of Rogers [1967]. For a short survey of more recent

work as well as a major new result the reader should see Soare [1974] and

[1974a].

In this paper we are concerned with the general question of how various

subclasses such as '31*, the recursive sets modulo finite sets, sit inside of $ *

and to what extent they determine its structure at least as far as automor-

phisms are concerned. More specifically we begin with two questions of A.

Nerode:

(1) Is every automorphism of S * uniquely determined by its action on *3l*?

(2) Does every automorphism of "31 * extend to one of S *?

Of course one can ask the same questions for other reasonable subclasses of

<S * as well.

Upon first consideration it seemed that the answer to the first question

should be no. Thus, for example, consider an r-maximal set A (no recursive
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set splits A) and a major subset B of A (A \J W =* N => B \j W = * N).

Then A and B sit the same way with respect to all recursive sets. Indeed one

can see that the lattices generated by <3l* u {A} and "31* u {B} are

isomorphic via a map which is the identity on "31* and takes A to B. One

might then think that one could extend this to an automorphism on all of S *.

This, however, is not the case. Indeed we give a positive answer to the first

question in the most general setting in Theorem 5: Every automorphism of

S * is uniquely determined by its action on any recursively invariant class.

As one should now expect the answer to the second question is no. Indeed

r-maximal sets are used below to provide a counterexample (Theorem 8)2.

Although a result as general as that of Theorem 1 seems harder to formulate,

we supply examples of nonextendible automorphisms for most classes of

interest (Theorem 10).

In this paper all named sets will be assumed to be r.e. We use "*" to mean

"modulo finite sets". Thus "A Ç* B" means that there are only finitely many

elements in A not in B. N is the set of nonnegative integers. A is the

complement of A.f[A] is the range of/restricted to A. We refer the reader to

Rogers [1967] for all unexplained notation and terminology.

1. We work up to the final theorem by stages showing that automorphisms

are determined by their action on various classes. Thus throughout this

section (p, and q>2 will be automorphisms of S * which we will assume agree

on some class and then try to show that <p, = <p2. In addition to giving

different pictures of the structure of S * some of the intermediate results will

have other applications as well. We begin with the low sets. (A is low iff

A'=T0'.)

Lemma 1. //(¡p, and <p2 agree on the low sets, <px = <p2.

Proof. Consider any set A. By Sacks [1966, Chapter 6, Corollary 1] or by

an easy direct construction there are low sets B and C such that A = B u C.

As (px(B) =* <p2(B) and tpx(C) =* q>2(C) by assumption, <px(A) =* <p2(A).

D
The next class we want is 91L*, the class of all maximal sets (modulo finite

ones). But we first need another fact.

Lemma 2. // A is low (or even low2, i.e. A" =T 0") and B - A is infinite

then there is a maximal set M with M Ç B — A.

Proof. Let/ be a recursive function enumerating B u A.f~x[A] is clearly

Turing reducible to A and so low2. By Lachlan [1968a] there is a maximal set

Mx D f~\A].f[Mx] is easily seen to be maximal in B u A. Thus by Lachlan

[1968] there is a recursive set R DB u A with (B u A) - f[Mx] ç R'. R u

This result was proved jointly with R. Soare and is included here with his permission.
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f[Mx] is then the required maximal set M.   □

We note that this fact can be combined with a proof from Shoenfield [1976]

to characterize the degrees of sets with exactly n maximal (or hyperhypersim-

ple) supersets.

Corollary. A degree a contains a set A with exactly n maximal ior hhs)

supersets iff a G L2 ithe class of low2 sets).

Proof. If A is low2 then (as it is not hyperhypersimple (hhs) by Martin

[1966]) there are B0, Bx, . . . such that the B¡ - A are infinite and pairwise

disjoint. Thus by Lemma 2 A has infinitely many maximal supersets. Con-

versely if a G L2 choose any set B (with recursive enumeration bis)) with

exactly n maximal (hhs) supersets. Now let C be any set in a with recursive

enumeration eis). If A is the subset of B permitted by C,

A = {x|(3i)(3í < *)(x = ¿(s) and c(/) < x)},

then Shoenfield's argument shows that A also has exactly n-maximal (hhs)

supersets. Of course A < t C and by an unpublished remark of Jockusch one

can choose b and c so that B - A is infinite so that A =t C: By Robinson

[1968] we can choose C and a recursive function/so that Cc (the computation

function for c) does not dominate /. It is now easy to choose b so that Cb

dominates/ By definition then B — A is infinite. □

Returning to our immediate concerns we prove

Lemma 3. 7/<p„ <p2 agree on 91c* then qp, = <p2.

Proof. If not, there is, by Lemma 1, a low set A with <pxiA) ¥=* op2iA).

Without loss of generality assume that <pxiA) — <p2L4) is infinite. By Lemma 2

and the fact that <p2 is an automorphism (and so preserves the following

property of A: VB[B £* A =*(3 maximal M) iA E* M and B ÇZ* M)])

there is a maximal set M E* <rj,L4) - <p2L4). So <p2xiM)* D A and

mf'(A/)* 2 A. As automorphisms map only maximal sets to maximal sets

and (p, and <p2 agree on 911*, so do q>x~x and <p2 '. Thus op2 '(Af) = opx~'(M) for

a contradiction.   □

Note that in this proof we only needed that <p, and <p2 were elementary

maps agreeing on 9IL* and containing 911* in their range. We will need this

fact in the next section.

We now give the answer to the first question.

Lemma 4. If <px, <p2 agree on <3l*,<px = <p2.

Proof. If not there is, by Lemma 3, a maximal set M with opxiM)

t*=* <p2(A/). As <P](A/) and <p2(M) are maximal <pxiM) u y2iM) =* N. We

can therefore reduce these sets to get a recursive set R with R C <pxiM) and

R D<p2iM)  (so  R ÇL* tp2iM)).  As  before  this  is  a  contradiction  since

automorphisms map the recursive sets onto recursive sets.   □

Finally we prove the general result.



RECURSIVELY ENUMERABLE SETS 321

Theorem 5. Let Q* be any nontrivial (i.e. none of0, {0}, {N}) class of r.e.

sets (modulo finite sets) closed under recursive isomorphism. If <p, and <p2 agree

on Q* then tp, = <p2.

Proof. If not Lemma 4 tells us that there is a recursive R such that

<px(R) =£ <p2(R). Without loss of generality assume that <px(R) - <p2(R) is

infinite. So then is <p2~l<px(R) - R. (It is, of course, recursive.) Let W E 6*

( W =£■ 0 or N). We can clearly find a W recursively isomorphic to W (and

so in 6*) with W ç y2l<px(R) - R. (Just map <p21<px(R ) - R to a recursive

subset of W.) Thus W u <p2l<px(R) = * N but W u R =t * N. By assump-

tion q>i~lq>2 is the identity on 6*. Applying this to the first fact gives

W u R = * N which contradicts the second.   □

As one can argue that any class of r.e. sets of recursion theoretic interest

should be closed under recursive isomorphism, this theorem gives a positive

answer to question one for all classes of interest.

2. In trying to find an automorphism of 91 * not extending to one of S *, we

(R.I. Soare and the author) began with the observation that the extension

lemma of Soare [1974] constructs automorphisms of 91* rather than S* if

one begins with r-maximal sets rather than maximal sets. More specifically, if

A and B are r-maximal it constructs a permutation p of N such that p induces

an automorphism of 91* and p[A] = B. The next step was to show that at

least some A--maximal sets are distinguished by their relationship with the

recursive sets. The grossest and most familiar distinction between r-maximal

sets is whether or not they have a maximal superset. This property proved to

be dependent on the relationship of the set to the recursive sets and so

supplied the solution. We begin with that result.

Lemma 6. Let A and B be r-maximal. If for every recursive set R, A u R

= * N <=> B U R —* N, then A has a maximal superset iff B does.

Proof. Assume the condition is satisfied and that B has a maximal

superset M. By maximality either M C * A or M Ç * A. In the first case

A Q * M and we are done. In the second case A u M = * N and we can

reduce A and M to get a recursive set R such that A u R = N and R ç M.

But as B C M we have B\jRQM=ri*NfoTa contradiction.    □

Lemma 1. If A and B are r-maximal there is an automorphism <p of 91* such

that for every recursive R, A\jR = *N<^B\j <p(R) ■» * N.

Proof. As we have mentioned, this is a consequence of the extension

lemma of Soare [1974]. But rather than using the proverbial canon we give a

direct construction. We will build two lists, A, R0, /?,,.. . and

B, R0, Rx, . . . , such that {R¡\i < w} and {R¡\i < w} are lists of the recursive

sets. We wish to guarantee that for any sequence /,, i2, . . . , i„ that A n R¡

n • • • n Rin is infinite iff B n Rit n • • • n Riit is infinite. By the easy proof

of Theorem 1.3 of Soare [1974] this suffices to construct a permutation p of TV
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such that/7 [,4] = B and p[R¡] = R¡. This/» will therefore induce the desired

automorphism of <b\*.

We proceed by induction with a back and forth argument. Say we wish to

add_Rn + x to the first list. The /?„..., Rn (/?„ . . . , R„) have split A iB) and

AiB) into 2" pieces in the obvious way. We are assuming by induction that

for each such piece Sj (J < 2") Sj n A and Sj n A are infinite iff the

corresponding Sj n B and Sj D B are. We wish to construct Rn+X so that, for

each/ < 2", Rn+X acts the same way on S, as Rn+X does on 5,: If Sj n Rn+X

= * Sj let T, = Sj. If SjD Rn = *0 let 7} = 0. Otherwise both S, n R¿t+X

and Sj n Rn + X are infinite. By r-maximality of A either S;nÄn+: *Dyl or

0 C * ¿>} n /?n+1 C * A. In either case the corresponding relation holds for 5,

ana 2?. We can therefore choose a recursive R E Sj D B. We let Tj = Sj —

R. Thus in each case T} has the same relation to Sj as Rn+X does to S^. We let

We can now combine these results to produce our nonextendible automor-

phism of 91*.

Theorem 8. There is an automorphism a? of 91* which does not extend to one

of&*.

Proof. Let A be an /--maximal set with a maximal superset and B one

without any (one exists by Lachlan [1968]). Let <p be the automorphism of

Lemma 7. If there were an extension \p of <¡d to S * then we would have for

every recursive set R that

4>(A) U \¡>(R) =* N^>A u R =* N^B u <p(Ä)

= * N^B u t(R)=* N.

As 5 has no maximal superset Lemma 6 says that ^(A) has none either for

our contradiction.    □

Although there does not seem to be an obvious best theorem along these

lines for arbitrary classes we can handle the standard ones of interest in

recursion theory by another type of argument. We will consider subclasses Q *

of S * containing 9M * (the maximal sets) and contained in § * (the simple

sets). What we will actually build is a proper elementary map op: S* -» S*

mapping C* onto G*. That m restricted to C* has no extension to an

automorphism of & * will then follow from the remarks to Lemma 3.

Theorem 9. There is a proper elementary embedding <p: £ * —> S * with

S * C range(ip).

Proof. The construction is patterned on one used by Lachlan to show that

there are 2"° automorphisms of S * (see Soare [1974, Theorem 1.1]). We first

choose a strictly decreasing sequence {R¡\i < w} of infinite recursive sets with

R0 = N such that for every n, Wn *2 Rn+X or W„ Q* Rn+X ({ W„\n < w} is a

listing of the r.e. sets.): If Wn+X g* R„ then Wn+X n R„ is infinite and we can

choose R„+x  to be a recursive subset of  rVn + x n R„ (coinfinite in Rn).
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Otherwise we can take any infinite recursive set coinfinitein Rn as R„+x. Next

let A be an infinite recursive subset of Rx coinfinite in Rx. We will choose a

pairwise disjoint sequence [A¡\i < a} of infinite recursive sets such that

\JA¡ = A and if W„ is simple W„*D \Ji>nA¡: By simplicity Wn n A -

U¡<nA¡ is infinite and so has an infinite recursive subset R coinfinite in it.

We let An+X = A - UI<HA, - R. (So Aj C R C W„ for every/ > ai.) We

have the following picture in mind:

R0 ~Ry

Rl  ~R2

R2 -R3

R0-Ry-A

R\      R2

R2    R3

We now choose any recursive one-one onto maps pn: Rn - Rn+l —>(Rn -

R„+x) U An. Together these define a permutation p of N by p(x) = p„(x)

where x E Rn — Rn+X.

Claim \.p induces an elementary embedding <p: & * -> & *.

Proof. In fact for every ai the sets p[WQ],p[rVx], . . . ,p[rV„] are the images

of W0, Wx, . . . ,Wn under a single recursive permutation p„ of N: pn(x) =

p,(x) if x E R¡ - Ri+X, i < ai, andp„(x) = q„(x) if x E Rn+X where q„ is any

one-one recursive map of Rn + X onto Rn+X U U^,,^, = Rn+X U (A_-

U ¡<„A'¡). To see this consider a W¡, i < n.pn=p on R„+x so if W¡ C* Rn+X

then there is no problem. Otherwise however Wt * D Rn+X by construction so

p[ Wt] - *p„[ wi n P„+1] u p[ wt n p„+1]

= *p„[h/n P„+1]u Rn+Xu \jAt
i>n

= •/.[ »ï n £+i] u p„[ «/ n p„+1] = *p„[ w,.].

Thus p[IP0], ■ • • >P[WJ are the images of Jf^, . . . , Jf„ under the

automorphism induced by p„. They therefore satisfy the same first order

sentences and so <p is an elementary embedding.

Claim 2.AE: range <p.

Proof. Consider any Wn. If Wn * D P„+1 then <p(W„) * 2 P„+1 so <p(Wg

^* A If 1T„ ç* P^ then <p(IFn) n U i>nA, = * 0 and so <p(Wn) =£* A.

Claim 3. If Wn is simple then Wn E range (¡p.

Proof. Wn<£* RnJrX by simplicity so Wn *D R„+x. Moreover Wn *D

U,>„^, by the choice of the A,. Now If = W^ n (Pn+,- U,>„^,) is an r.e.

subset of  P„+l— Ui>nA¡ which is the range of pn. Thus there is an r.e. set
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U CR„+X (the domain of pn) such thatp[U] = p„[U] = W. We now claim

thatm(f7uÄn+1)= Wn:

<PÍUl)Rn + x)=p[UuRn+x]=p[U]up[Rn+x]

= w,nfc-U^)uÄ,+ 1uU A, = wn.   D
^ i>n       ' />„

Note that if W is any nonsimple set we could arrange for W to be omitted

from the range of <p by choosing^ C W and Rx Q W. For then Wn * D

*„+i "» <K^„) *2 UI>nA ç W and «/ ç* /v^,=> <p(^n) n Rn+i

= * 0. So in either case <p( W„) ̂  * W. Thus, for example, we see that no

nonsimple W is algebraic (in the model theoretic sense) over S*. Again

taking different choices for thepn we can get 2K° such elementary embeddings.

We also get our main result on nonextendability as an application of this

theorem.

Theorem 10. Let G* be any subclass of £* closed under recursive isomor-

phism such that 9H* C G* E S *. Then there is an automorphism of the lattice

£ * generated by Q* not extendible to one of &*.

Proof. We claim that the <p of Theorem 9 restricted to £* is the desired

map.

Claim 1. (p maps 6* onto G* (and so restricts to an automorphism of £*).

Proof. If Wn E G* then yiWn) = p„[rVn] is recursively isomorphic to Wn

and so in G*. On the other hand if Wn E &*, Wn £ S* and so Wn = tpirV)

for some W. But as before W = Wn and so W E G*.

Claim 2. No automorphism \¡/ of £ * extends <p.

Proof. By the remarks to Lemma 3 as <p and i/V are elementary and agree

on M* E G * (which is also in their range) we would have to have <p = u>. Of

course, this contradicts the properness of op.   □

We can also prove some additional results along these lines. Thus, for

example, using the ideas from Shore [1977] and the full force of Theorem 5

we can remove the restriction that 91L* C G*. We can also construct proper

elementary embeddings containing 91* in their range (and omitting any

prescribed nonrecursive set). This, of course, gives an alternate proof of

Theorem 9 by using Lemma 4 instead of Lemma 3. Indeed even some

combinations of the two embedding constructions are possible. We do not,

however, know what the most general theorem along these lines should be.

Perhaps one could show that for any recursively invariant class G* not

generating all of & * there are proper elementary embeddings of the above

sort containing G* in their range and so that there are nonextendible

automorphisms of the lattice generated by G*. In any case returning to our

original question of how the structure of & * is determined by subclasses the

answer in general seems to be that no recursively invariant subclass (or at

least none of the usual ones) determine S * in a first order way but that all of



RECURSIVELY ENUMERABLE SETS 325

them  fix  the  structure  of   S*   in   a  second  order  way  in   terms  of

automorphisms.
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