RELATIVE S-INVARIANTS

ROBERT O. STANTON

ABSTRACT. Warfield has defined the concept of a T^*-module over a discrete valuation ring and has proved a classification theorem for these modules. In this paper, the invariant S defined by the author is extended. This allows a generalization of the classification theorem of Warfield.

1. Preliminaries. R will be a discrete valuation ring throughout, and p will represent a generator of its maximal ideal. The word “module” will mean R-module. Standard terminology of abelian groups will be used (see Fuchs [1], especially §79). The exception to this is that we will define the height of 0 to be ω', and assume $\alpha < \omega < \omega'$ for all ordinals α. The indicator of an element x will be denoted $H(x)$. An indicator is called proper if it does not contain ω'. If A is a submodule of M and α is an ordinal or ω, the αth relative Ulm invariant will be denoted $f(\alpha, M, A)$.

In [5], (announced in [4]), Warfield defined a T-module as a module that can be defined in terms of generators and relations in such a way that the only relations are of the form $px = 0$ or $px = y$. A summand of a T-module is called a T^*-module. A module M has torsion free rank one if, for any two elements x and y of infinite order in M, there are nonzero elements r and s in R such that $rx = sy$. Warfield has shown that if M is a T-module, it is either a torsion module, or a direct sum of modules of torsion free rank one.

A subset X of a module M is a decomposition basis if $[X]$ is the free module on X, $M/[X]$ is torsion, and $h(\sum r_ix_i) = \min\{h(r_i, x_i)\}$, for $r_i \in R$, $x_i \in X$. (Here $h(x)$ denotes the height of x.) It has been shown by Warfield that a T^*-module M has a decomposition basis X such that $[X]$ is nice in M.

In §2, we define the concept of stability, which is stronger than niceness. The invariant $S(e, M)$ defined in [2] is generalized. These concepts are used in §3 to generalize Warfield's theorem [5, Theorem 5.2].

2. Stability and invariants.

Definition. Let M be a module and A be a submodule. A is called stable in M if:

(i) A is nice in M;

(ii) every coset $m + A$ of infinite order contains an element x such that $p'x$
is proper with respect to A for $i = 0, 1, 2, \ldots$. Such an element x is called strongly proper with respect to A.

We list without proof several elementary properties.

(A) A nice submodule A is stable in M exactly if $\mu(M/A) = (\mu M + A)/A$
for all proper indicators μ.

(B) If x is strongly proper with respect to A, then $H(x + a) = \min\{H(x), H(a)\}$ for all $a \in A$.

(C) Direct summands are stable.

(D) Let N_i be a summand of M_i for $i \in I$. Then $\bigoplus_{i \in I} N_i$ is stable in $\bigoplus_{i \in I} M_i$ if and only if each N_i is stable in M_i.

(E) Let A and B be submodules of M with $A \subseteq B \subseteq M$. If A is stable in M and B/A is stable in M/A, then B is stable in M.

(F) Let M have torsion free rank one and let $x \in M$. Then $[x]$ is stable in M.

(G) Let M be a T^*-module. Then M has a decomposition basis X such that, for each $Y \subseteq X$, $[Y]$ is stable in M.

Let M be a module and $\mu = \{\alpha_0, \alpha_1, \ldots\}$ be a proper indicator. The following were defined in [2]:

$$\mu M = \{m \in M : H(m) \geq \mu\};$$

$$\mu^* M = \{m \in \mu M : \text{for infinitely many } i, h(p^i m) > \alpha_i\}.$$

Let A be a submodule of M. Then

$$M(p, A) = \{m \in M : \text{there is } k > 0 \text{ such that } p^k m \in A\}.$$

Let $\mu^*(M, A) = \mu M \cap (\mu^* M + M(p, A))$. Then $\mu M/\mu^*(M, A)$ is a vector space over $R/\mu R$ if μ does not contain ∞, and is a free R-module if μ contains ∞. In either case, the rank $r(\mu M/\mu^*(M, A))$ is defined. We may now define the relative S-invariants.

Definition. Let M be a module, A a submodule and e an equivalence class of indicators. Then

$$S(e, M, A) = \sup_{\mu \in e} \{r(\mu M/\mu^*(M, A))\}.$$

These invariants are called relative S-invariants.

Let $\mu = \{\alpha_0, \alpha_1, \ldots\}$ be an indicator and $i \geq 0$.

Then μ_i is defined by $\mu_i = \{\alpha_i, \alpha_{i+1}, \ldots\}$.

Lemma 2.1. The map $\phi: \mu M/\mu^*(M, A) \to \mu_i M/\mu_i^*(M, A)$, defined by

$$\phi(x + \mu^*(M, A)) = p^i x + \mu_i^*(M, A),$$

is a monomorphism.

The proof is similar to Lemma 1 of [2].

3. A Generalization of Warfield's Theorem. The following theorem generalizes Theorem 5.2 of Warfield [5].

Theorem 3.1. Let M and N be modules, with submodules A and B respec-
RELATIVE S-INVARIANTS

...tively, subject to the following conditions.

(i) A is stable in M and B is stable in N.

(ii) M/A and N/B are T^*-modules.

(iii) $f(\alpha, M, A) = f(\alpha, N, B)$ for all ordinals α.

(iv) $S(e, M, A) = S(e, N, B)$ for all equivalence classes e of proper indicators.

(v) There is a height preserving isomorphism $\psi: A \to B$.

Then ψ can be extended to an isomorphism $\phi: M \to N$.

Proof. By (G) of the previous section and (ii), M/A has a decomposition basis X such that X' is stable in M/A for every $X' \subseteq X$. Likewise N/B has a decomposition basis Y with the analogous property. We may assume, by the proof of Lemma 5.1 of [5], that X has the following property: Whenever $f(\alpha, M, A)$ is infinite, then $f(\alpha, M, A \oplus [X])$. Likewise, we may assume that whenever $f(\alpha, N, B)$ is infinite, then $f(\alpha, N, B \oplus [Y])$. It is also permissible to assume that there is a bijection $\beta: X \to Y$ such that $H(x) = H(\beta x)$ for all $x \in X$.

We interrupt the proof in order to show that a "one step extension" is possible.

Lemma 3.2. Let the situation of Theorem 3.1 be given and let $x \in X$. Then ψ can be extended to a height preserving isomorphism $\zeta: A \oplus [x] \to B \oplus [\beta x]$ such that:

(i) $A \oplus [x]$ is stable in M and $B \oplus [\beta x]$ is stable in N.

(ii) $M/(A \oplus [x])$ and $N/(B \oplus [\beta x])$ are T^*-modules.

(iii) $f(\alpha, M, A \oplus [x]) = f(\alpha, N, B \oplus [\beta x])$ for all α.

(iv) $S(e, M, A \oplus [x]) = S(e, M, B \oplus [\beta x])$ for all e.

Proof. Since $[A, x]/A$ is free, $A \oplus [x]$ is really a direct sum, so the map ζ can be defined by $\zeta(a + rx) = \varphi a + r\beta x$. ζ is trivially height preserving. Property (i) follows from (E), while (ii) is a known property of T^*-modules. For (iii), we use the following well-known formula.

$$f(\alpha, M, A \oplus [x]) = f(\alpha, M, A) - 1$$

if $f(\alpha, M, A)$ is finite, and there is r such that $h(rx) = \alpha$, but $h(prx) > \alpha + 1$.

$$f(\alpha, M, A \oplus [x]) = f(\alpha, M, A)$$

otherwise.

A standard argument shows the following. If e is a class of indicators, then

$$\{ x \in X : H(x) \in e \} = S(e, M, A).$$

With this observation, (iv) is immediate.

Conclusion of proof of Theorem 3.1. Let $\theta: A \oplus [X] \to B \oplus [Y]$ be the unique isomorphism which extends ψ and β. θ is a height preserving isomorphism, $A \oplus [X]$ is nice in M and $B \oplus [Y]$ is nice in $[Y]$. $M/(A \oplus [X])$ and $N/(B \oplus [Y])$ are torsion T^*-modules. Because of the choice of X and Y and Lemma 3.2, the relative Ulm invariants are equal:

$$f(\alpha, M, A \oplus [X]) = f(\alpha, N, B \oplus [Y]).$$
By the analogue to Ulm's theorem for totally projective groups, (see Walker [3, Theorem 2.8]), θ can be extended to an isomorphism $\phi: M \to N$.

REFERENCES

5. ______, Classification theory of abelian groups. II: Local Theory (to appear).

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, ST. JOHN'S UNIVERSITY, JAMAICA, NEW YORK 11439