AN INDIVIDUAL ERGODIC THEOREM

RYOTARO SATO

Abstract. An individual ergodic theorem is proved for a linear operator T on L_1 of a finite measure space which satisfies certain norm conditions.

Derriennic and Lin [5] showed by an example that given an $\varepsilon > 0$ there exists a positive linear operator T on L_1 of a finite measure space, with $T1 = 1$ and $\|T^n\|_1 = 1 + \varepsilon$ for all $n \geq 1$, and a function f in L_1 such that the individual ergodic limit

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} T^i f(x)$$

does not exist almost everywhere on a certain measurable subset of positive measure.

In this paper, however, we shall prove the following individual ergodic theorem.

Theorem. Let (X, \mathcal{F}, μ) be a finite measure space and $L_p = L_p(X, \mathcal{F}, \mu)$, $1 < p < \infty$, the usual Banach spaces. Let T be a bounded linear operator on L_1 and τ its linear modulus in the sense of Chacon and Krengel [4]. Assume the conditions:

1. $\sup_n \left\| \frac{1}{n} \sum_{i=0}^{n-1} \tau^i \right\|_1 < \infty$,
2. $\sup_n \left\| \frac{1}{n} \sum_{i=0}^{n-1} \tau^i \right\|_{\infty} < \infty$.

Then, for any $f \in L_{\infty}$, the ergodic limit

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} T^i f(x)$$

exists for almost all $x \in X$.

Proof. Let T^* and τ^* denote the adjoint operators of T and τ, respectively. Since $|T^* f| \leq \tau^* |f|$ (cf. [1]) and $\int \tau^* |f| \, d\mu = \int (\tau 1) |f| \, d\mu \leq \|	au\|_\infty \|f\|_1$ for all
$f \in L_\infty$, T^* and τ^* can be extended to bounded linear operators S and σ on L_1, respectively. It is easily seen that

$$S^* = T^* \quad (on \ L_\infty) \quad and \quad \sigma^* = \tau^* \quad (on \ L_\infty).$$

Hence it follows that the linear modulus of S is σ and that

$$\sup_n \left\| \frac{1}{n} \sum_{i=0}^{n-1} \sigma^i \right\|_1 = \sup_n \left\| \frac{1}{n} \sum_{i=0}^{n-1} \tau^i \right\|_\infty < \infty.$$

We now define two functions u and v in L_∞ by the relations:

$$u(x) = \limsup_n \frac{1}{n} \sum_{i=0}^{n-1} \tau^i \chi(x) \quad (x \in X)$$
and

$$v(x) = \limsup_n \frac{1}{n} \sum_{i=0}^{n-1} \tau^i \chi(x) \quad (x \in X).$$

It may be readily seen that $\tau^* u \geq u$ and $\tau v \geq v$. Thus if we set

$$s(x) = \lim_n \frac{1}{n} \sum_{i=0}^{n-1} \tau^* u(x) \quad (x \in X)$$
and

$$t(x) = \lim_n \frac{1}{n} \sum_{i=0}^{n-1} \tau v(x) \quad (x \in X),$$

then

(3) \quad $\tau^* s = s$ and $\tau t = t$.

Let $Y = \{x : s(x) > 0\}$ and $Z = X - Y$. Then, by [5] and [7], we have:

(i) if $f \in L_1(Z)$ implies $\tau f \in L_1(Z)$,
(ii) if $f \in L_1(Z)$ then $\lim_n \|/(1/n) \sum_{i=0}^{n-1} \tau f\|_1 = 0$,
(iii) $\lim_n \|\tau f\|_1/n = 0$ for every $f \in L_1$.

We shall now divide the proof of the theorem into several steps, since it is rather long.

Step I. If $f \in L_\infty(Z)$ then $\lim_n (1/n) \sum_{i=0}^{n-1} T^f(x) = 0$ for almost all $x \in X$.

To prove this, we may and do assume without loss of generality that $0 < f < 1$ on Z, and it is enough to show that the function h defined by

$$h(x) = \limsup_n \frac{1}{n} \sum_{i=0}^{n-1} \tau f(x) \quad (x \in X)$$

satisfies $h(x) = 0$ almost everywhere on X. In fact, we notice that $0 < h \in L_\infty(Z)$ (c $L_1(Z)$), by (2) and (i), and that $\tau h \geq h$. Hence (ii) implies that

$$\|h\|_1 < \lim_n \left\| \frac{1}{n} \sum_{i=0}^{n-1} \tau h \right\|_1 = 0,$$

and therefore $h(x) = 0$ almost everywhere on X.

Step II. For any $f \in L_\infty$ the limit $\lim_n (1/n) \sum_{i=0}^{n-1} T^f(x)$ exists for almost all $x \in Y$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
To see this, we first notice that

$$\int |Tf| s \, d\mu \leq \int (|f| \tau s) \, d\mu = \int |f| \tau^* s \, d\mu = \int |f| s \, d\mu$$

for all $f \in L_1$. Thus T may be regarded as a linear contraction operator on $L_1(Y, s \, d\mu)$, since $L_1 = L_1(X, \mathcal{F}, \mu)$ is a dense subspace of $L_1(Y, s \, d\mu)$. Therefore we can apply Chacon's general ratio ergodic theorem [2], [3] to T to infer that, for any $f \in L_\infty = L_\infty(X, \mathcal{F}, \mu) \subset L_1(Y, s \, d\mu)$, the limit

$$\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} T^i f(x) = \lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} T^i f(x) / \sum_{i=0}^{n-1} \tau^i(x)$$

exists almost everywhere on $Y \cap \{x: \tau(x) > 0\}$. On the other hand it is immediate from the definition of τ that, for any $f \in L_\infty$,

$$\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} T^i f(x) = 0$$

almost everywhere on $\{x: \tau(x) = 0\}$. Thus Step II is established.

Step III. If $f \in L_\infty$ and $\lim_{n} \| (1/n) \sum_{i=0}^{n-1} T^i f \|_1 = 0$, then $\lim_{n} \| (1/n) \sum_{i=0}^{n-1} T^i f(x) = 0$ for almost all $x \in X$.

To prove this, define

$$f_0(x) = \lim_{n} \sup \left| \frac{1}{n} \sum_{i=0}^{n-1} T^i f(x) \right| \quad (x \in X).$$

Clearly, $0 < f_0 \in L_\infty$, and it follows from Step II that $f_0(x) = 0$ for almost all $x \in Y$. For each $k \geq 1$, put

$$f_k = \frac{1}{k} \sum_{i=0}^{k-1} T^i f.$$

By an easy computation we then have

$$\left| \frac{1}{n} \sum_{i=0}^{n-1} T^i f - \frac{1}{n} \sum_{i=0}^{n-1} T^i f_k \right| = \left| \frac{1}{n} \left(T^n - I \right) \sum_{i=1}^{k-1} \left(1 - \frac{i}{k} \right) T^{i-1} f \right|.$$

To see that

$$\lim_{n} \left| \frac{1}{n} \sum_{i=0}^{n-1} T^i f(x) - \frac{1}{n} \sum_{i=0}^{n-1} T^i f_k(x) \right| = 0$$

for almost all $x \in X$, define

$$h(x) = \sum_{i=1}^{k-1} \left(1 - \frac{i}{k} \right) T^{i-1} f(x) \quad (x \in X)$$

and

$$\tilde{h}(x) = \lim_{n} \sup \left| \frac{1}{n} \tau^n h(x) \right| \quad (x \in X).$$

Then we have
for almost all $x \in X$, and furthermore

$$
\tau \tilde{h}(x) = \tau \left(\limsup_n \frac{1}{n} \tau^n h(x) \right) \geq \limsup_n \frac{1}{n} \tau^{n+1} h(x) = \tilde{h}(x)
$$

for almost all $x \in X$. Here we can apply Step II to τ instead of T and obtain that $\tilde{h}(x) = 0$ for almost all $x \in Y$. Therefore $\tilde{h} \in L_\infty(Z) \subset L_1(Z)$, and so

$$
\|\tilde{h}\|_1 < \lim_n \frac{1}{n} \sum_{i=0}^{n-1} \tau^i \|\tilde{h}\| = 0,
$$

by (ii). Consequently, $\tilde{h}(x) = 0$ for almost all $x \in X$.

It then follows that, for almost all $x \in X$,

$$
\limsup_n \left| \frac{1}{n} \sum_{i=0}^{n-1} T^i f(x) - \frac{1}{n} \sum_{i=0}^{n-1} T^i f_k(x) \right| = 0 \quad (k > 1).
$$

Thus, for almost all $x \in X$,

$$
f_0(x) = \limsup_n \left| \frac{1}{n} \sum_{i=0}^{n-1} T^i f_k(x) \right| \leq \limsup_n \frac{1}{n} \sum_{i=0}^{n-1} \tau^i |f_k|(x)
$$

$$
< \limsup_n \frac{1}{n} \sum_{i=0}^{n-1} \tau^i f_k^1(x) + \limsup_n \frac{1}{n} \sum_{i=0}^{n-1} \tau^i f_k^2(x),
$$

where $f_k^1 = |f_k|_Z$ and $f_k^2 = |f_k|_Y$. By this and the argument in Step I, we obtain that

$$
f_0(x) \leq \limsup_n \frac{1}{n} \sum_{i=0}^{n-1} \tau^i f_k^2(x)
$$

for almost all $x \in X$, because $f_k^1 \in L_\infty(Z)$.

Let us put, for each $k > 1$,

$$
\tilde{f}_k(x) = \limsup_n \frac{1}{n} \sum_{i=0}^{n-1} \tau^i f_k^2(x) \quad (x \in X).
$$

It follows that $0 < \tilde{f}_k \in L_\infty$ and that $\tau^i \tilde{f}_k > \tilde{f}_k$. Hence, writing $g_k^1 = \tilde{f}_k 1_Z$ and $g_k^2 = \tilde{f}_k 1_Y$, and applying (ii) to $g_k^1 \in L_\infty(Z) \subset L_1(Z)$, we get

$$
\|\tilde{f}_k\|_1 \leq \lim_n \frac{1}{n} \sum_{i=0}^{n-1} \tau^i g_k^1
$$

$$
< \lim_n \frac{1}{n} \sum_{i=0}^{n-1} \tau^i g_k^2 + \lim_n \frac{1}{n} \sum_{i=0}^{n-1} \tau^i g_k^3,
$$

$$
= \lim_n \frac{1}{n} \sum_{i=0}^{n-1} \tau^i g_k^2 < \sup_n \frac{1}{n} \sum_{i=0}^{n-1} \tau^i \|g_k^2\|_1.
$$
On the other hand, applying Step II to \(\tau \) instead of \(T \), we observe that

\[
g_k^2(x) = \lim_n \left(\frac{1}{n} \sum_{i=0}^{n-1} \tau_j f_k^2(x) \right) 1_\gamma(x)
\]

for almost all \(x \in X \). Hence, by Fatou’s lemma,

\[
\| g_k^2 \|_1 \leq \liminf_n \left\| \left(\frac{1}{n} \sum_{i=0}^{n-1} \tau_j f_k^2 \right) 1_\gamma \right\|_1 \\
\leq \left\{ \sup_n \left\| \frac{1}{n} \sum_{i=0}^{n-1} \tau_j \right\|_1 \right\} \| f_k^2 \|_1.
\]

By this and the fact that

\[
\| g_k \|, = \lim_k \| f_k \|, = 0,
\]

we obtain that \(\lim_k \| g_k^2 \|_1 = 0 \), and hence that \(\lim_k \| f_k \|_1 = 0 \). Since \(0 < f_0(x) < f_k(x) \) for almost all \(x \in X \), it must follow that \(\| f_0 \|_1 = 0 \). So \(f_0(x) = 0 \) almost everywhere on \(X \), and this establishes Step III.

Step IV. For any \(f \in L_\infty \) there exists a function \(g \in L_\infty \) such that \(Tg = g \) and

\[
\lim_n \|(1/n)\Sigma_{i=0}^{n-1} T^i(f - g)\|_1 = 0.
\]

To prove this, let \(f \in L_\infty \) be given. Then, by (2) and Theorem IV.8.9 in [6], the set \(\{(1/n)\Sigma_{i=0}^{n-1} T^i f: n > 1\} \) is weakly sequentially compact in \(L_1 \), and by (iii), \(\lim_n \| T^nf \|_1/n < \lim_n \| n^{-1} T^n f \|_1/n = 0 \). Hence, a well-known mean ergodic theorem (cf. Theorem VIII.5.1 in [6]) shows that there exists a function \(g \in L_1 \) such that \(Tg = g \) and

\[
\lim_n \left\| \frac{1}{n} \sum_{i=0}^{n-1} T^i f - g \right\|_1 = 0.
\]

Clearly \(g \in L_\infty \), by condition (2), and hence Step IV is established.

Step V. We shall now conclude the proof of the theorem as follows.

Let \(f \in L_\infty \) be given, and using Step IV, write \(f = g + h \) where \(Tg = g \in L_\infty \) and \(h \in L_\infty \) satisfies \(\lim_n \|(1/n)\Sigma_{i=0}^{n-1} T^i h\|_1 = 0 \). Then, by Step III, we observe that

\[
\lim_n \left\| \frac{1}{n} \sum_{i=0}^{n-1} T^i f(x) - g(x) \right\|_1 = 0
\]

for almost all \(x \in X \). Hence the proof is completed.

Remark. In [8], an analogous result is proved for a strongly continuous one-parameter semigroup \(\{T_t\}_{0 < t < \infty} \) of positive linear operators on \(L_1 \) of a finite measure space.

Example. We shall construct a positive linear operator \(T \) on \(L_1 \) of a finite measure space which satisfies the following norm conditions:
(7) \[\sup_n \left\| \frac{1}{n} \sum_{i=0}^{n-1} T^i \right\|_1 < \infty \quad \text{and} \quad \sup_n \| T^n \|_1 = \infty, \]

(8) \[\sup_n \left\| \frac{1}{n} \sum_{i=0}^{n-1} T^i \right\|_\infty < \infty \quad \text{and} \quad \sup_n \| T^n \|_\infty = \infty. \]

Put \(a_0 = 0, a_1 = 1, a_2 = 2, a_n = 4a_{n-1} \) \((n \geq 3)\), and \(b_n = \sum_{i=0}^{n} a_i \) \((n \geq 0)\).

Write \(X = \{(n, i) : n \geq 1 \text{ and } 1 < i < b_n\} \), and let \(\mathcal{F} \) be all possible subsets of \(X \) and \(\lambda \) the measure on \((X, \mathcal{F})\) defined by \(\lambda(\{(1, 1)\}) = 1 \) and, for \(n \geq 2, \)

\[
\lambda(\{(n, i)\}) = \begin{cases}
\frac{1}{2^n-1}, & \text{if } 1 < i < a_n, \\
\lambda(\{(n-1, i-a_n)\}), & \text{if } a_n < i < b_n.
\end{cases}
\]

Put \(\mu(\{(n, i)\}) = \left(\frac{1}{4^n}\right) \lambda(\{(n, i)\}) \). Then it follows from an easy computation that \((X, \mathcal{F}, \mu)\) is a probability measure space. Define a point mapping \(\varphi \) from \(X \) to \(X \) by the relation:

\[
\varphi((n, i)) = \begin{cases}
(n, i + 1), & \text{if } 1 < i < b_n, \\
(n + 1, 1), & \text{if } i = b_n.
\end{cases}
\]

Then \(X = \{\varphi^n((1, 1)) : n \geq 1\} \), and thus if we set, for convenience's sake, \(\varphi^n((1, 1)) = n, \) then \(X = \{n : n \geq 0\} \). Define a positive linear operator \(S \) on \(L_1(X, \mathcal{F}, \mu) \) by the relation:

\[
Sf(n) = f(n + 1) \quad (f \in L_1(X, \mathcal{F}, \mu), n \in X).
\]

Then we have \(\sup_n \| (1/n) \sum_{i=0}^{n-1} S^i \|_1 < 4, \) since

\[
\frac{\mu(\{(n, i) : 1 < i < b_n\})}{b_n \mu(\{(n, 1)\})} < 2 \quad (n \geq 1).
\]

It is clear that \(\sup_n \| S^n \|_1 = \infty. \)

Next, let \(h \) be the function in \(L_\infty(X, \mathcal{F}, \mu) \) defined by \(h(n) = 2^{-i+1}, \) where \(b_{i-1} < n + 1 < b_i. \) Since

\[
\left(\sum_{i=0}^{b_n} h(i) \right)/(b_n + 1)h(b_n) < 4 \quad (n \geq 0),
\]

it follows that

\[
\sup_n \left\| \left(\frac{1}{n} \sum_{i=0}^{n-1} S^i h \right) / h \right\|_\infty < 4,
\]

and also that \(\sup_n \| (S^n h) / h \|_\infty = \infty. \) Hence, if we define a positive linear operator \(T \) on \(L_1(X, \mathcal{F}, h \, d\mu) \) by the relation:

\[
Tf = S(f h) / h \quad (f \in L_1(X, \mathcal{F}, h \, d\mu)),
\]

then it is easily seen that \(T \) satisfies norm conditions (7) and (8).

Acknowledgement. In conclusion, the author would like to express his gratitude to the referee for helpful comments which improved the paper.
Bibliography

Department of Mathematics, Josai University, Sakado, Saitama, 350-02 Japan