AN EXAMPLE OF A SPACE WHICH IS COUNTABLY
COMPACT WHOSE SQUARE IS COUNTABLY
PARACOMPACT BUT NOT COUNTABLY COMPACT

LEE PARSONS

Abstract. A subspace P of $\beta N - N$ is obtained whose square is disjoint from the graph, G, of a pre-selected homeomorphism $f: \beta N \rightarrow \beta N$ that has no fixed points. The construction is performed in such a way that, for $X = P \cup N$, all countable subsets of $X^2 - G$ will have a limit point in X^2. We use the following lemma: If $K \subset (\beta N)^2 - G$ is countably infinite, then $|\overline{K}(\beta N)^2| = 2^\omega$.

We construct the space X using the technique of J. Novák [N]. In the reference cited, Novák constructs a countably compact space whose square is not countably compact. Several versions have appeared in the literature. H. Terasaka's example [T] is presented in Gillman and Jerison, Rings of continuous functions [GJ] and in Steen and Seebach, Counterexamples in topology [SS]. Novák's example was modified by Frolik in [F]. The latter version is presented by Engelking in [E], Outline of general topology.

A subspace P of $\beta N - N$ will be obtained whose square is disjoint from the graph, G, of a preselected homeomorphism $f: \beta N \rightarrow \beta N$ that has no fixed point, but has the property that $f^2 = f$. The notation of [GJ] is used, primarily. The construction will be performed in such a way that all countable subsets of $X^2 - G$ will have a limit point in X^2, where $X = P \cup N$. Then X will be countably compact since it is homeomorphic to a closed subset of $X^2 - G$. Moreover, $G \cap X^2 = \{(n, f(n)): n \in N\}$ is closed in X^2 and is an infinite discrete set, so X^2 is not countably compact. But $X^2 = (X^2 \cap G) \cup (X^2 - G)$ is the disjoint union of a countably compact subspace and a countable, clopen discrete subspace and hence is countably paracompact.

The burden of proof is borne mostly by the following

Lemma. If $K \subset (\beta N)^2 - G$ is countably infinite then $|\overline{K}(\beta N)^2| = 2^\omega$.

Proof. Suppose that $K \subset (\beta N)^2 - G$ is countably infinite. We let π_1 and π_2 denote the projections onto the first and second factors of subsets of $(\beta N)^2$. If there is a point $p \in N$ such that $H = K \cap (\{p\} \times N)$ is infinite then $|\overline{H}| \geq |\overline{\pi_2H}| = 2^\omega$, noting that $\overline{\pi_2H} = \pi_2 \overline{H}$. But $|\overline{G \cap (\{p\} \times N)}|$...
\[\beta N \cap \{ p \times \beta N \} \cup \{ p \times \beta N \} \cap K \cap \{ p \times \beta N \} \leq 1 \]

for all \(p \in \beta N \), and \(\pi_i K \) is infinite, \(i = 1, 2 \).

If \(K' \subset K \) is countably infinite and has the property that \(\text{cl}(f[\pi_1[K^*]]) \cap \text{cl}(\pi_2[K']) = \emptyset \), then it is easy to establish that \(\text{cl}(\pi_1[K^*]) = 2^\omega \) and that \(\text{cl}(\beta N)^K \cap G = \emptyset \), from which the lemma follows. We now devote our attention to producing such a subset of \(K \).

Every countably infinite subset of \(\beta N \) has a countably infinite subset whose topology inherited from \(\beta N \) is discrete. Now, using this fact, choose an infinite subset \(K^* \subset K \) such that \(\pi_i[K^*] \) is discrete. Then \(f[\pi_1[K^*]] \) is discrete, since \(f \) is a homeomorphism. Apply this same technique again to obtain \(K^{**} \subset K^* \), countably infinite, such that \(\pi_2[K^{**}] \) is discrete. By assumption \((*)\), \(K^{**} \) has the property that \(f[\pi_1[K^{**}]] \) and \(\pi_2[K^{**}] \) are infinite, discrete topological subspaces of \(\beta N \). Since it is a bit tedious to carry the **'s about, let us assume without loss of generality that \(K \) has the latter property to begin with.

Now cull \(K \) again. Let \(K \) be enumerated as \(\{ (p_1, q_1), (p_2, q_2), \ldots \} \). Let \(i_1 = 1 \). Let \(U_1 \) be a neighborhood of \(q_1 \) which misses \(f(p_i) \) and infinitely many points of \(f[\pi_1[K]] \) and whose intersection with \(\pi_2[K] \) is \(\{ q_i \} \). Now suppose \(i_1, \ldots, i_n \) are selected in such a way that \(f[\pi_1[K]] \cap \bigcup_{i=1}^n U_i \) is infinite and \(f(p_i) \notin \bigcup_{i=1}^n U_i \) for \(j = 1, \ldots, n \), and \(\bigcup_{i=1}^n U_i \cap \pi_2[K] = \{ q_1, \ldots, q_n \} \). Now choose \(i_{n+1} \) so that \(f(p_{i_{n+1}}) \notin f[\pi_1[K]] \cap \bigcup_{i=1}^n U_i \). Then choose \(U_{n+1} \) so that, one, it does not contain \(f(p_j) \), \(j = 1, \ldots, n + 1 \); two, its intersection with \(\pi_2[K] \) is \(\{ q_{i_{n+1}} \} \); and three, it misses infinitely many members of \(f[\pi_1[K]] \cap \bigcup_{i=1}^n U_i \). The inductive selection of the sequence \(\langle i_1, i_2, \ldots \rangle \) is complete. Denote by \(K'' \) the subset \(\{ (p_i, q_i), (p_j, q_j), \ldots \} \) of \(K \). Then \(\bigcup_{i=1}^\infty U_i \) is a neighborhood of \(\pi_2[K'' \cap \bigcup_{i=1}^\infty U_i \cap f[\pi_1[K'\cap \bigcup_{i=1}^\infty U_i] = \emptyset \). Thus \(\text{cl}(\beta N)^f[\pi_1[K'\cap \bigcup_{i=1}^\infty U_i] \cap \pi_2[K'\cap \bigcup_{i=1}^\infty U_i = \emptyset \). In an exactly analogous manner, we pick an infinite subset \(K' \subset K'' \) having the property that \(f[\pi_1[K']] \cap \text{cl}(\pi_2[K']) = \emptyset \). Then it follows that \(\text{cl}(f[\pi_1[K']]) \cap \text{cl}(\pi_2[K']) = \emptyset \).

Note that \(\text{cl}(\pi_i K') = \pi_i \text{cl} K', i = 1, 2 \), so that we actually proved:

If \(K \subset (\beta N)^2 \) is countably infinite and if \(\{ p \in \beta N: (\beta N \times \{ p \}) \cap K \neq \emptyset \} \) and \(\{ p \in \beta N: \{ (p \times \beta N) \cap K \neq \emptyset \} \) are infinite, then

\[\left| \{ r \in \beta N: \exists s \in \beta N, (r, s) \in \text{cl} K - G \} \right| = \left| \{ s \in \beta N: \exists r \in \beta N, (r, s) \in \text{cl} K - G \} \right| = 2^\omega. \]

Now, beginning the construction of \(X \), we index the countable subsets of \((\beta N)^2 - G\) in type \(2^\omega \). (\(K_B, B < 2^\omega \). By the lemma, \(K_0 \) has a limit point which is not in \(G \cup N^2 \). Let \(P_0 = \{ r_0, s_0 \} - N \). Inductively, suppose \(P_0 \),
\(\alpha < \beta \), are selected so that \(P_{\alpha} \subset P_{\gamma} \) for \(\alpha < \gamma < \beta \) and \(f[P_{\alpha}] \cap P_{\alpha} = \emptyset \) and \(|P_{\alpha}| = |\alpha| \) if \(\alpha > \omega \) and \(|P_{\alpha}| < \omega \) if \(\alpha < \omega \). \(\cup_{\alpha < \beta} P_{\alpha} = \cup_{\alpha < \beta} |\alpha| = |\beta| < 2^\omega \) if \(\alpha > \omega \) and is less than \(\omega \) if \(\alpha < \omega \). Consider \(K_{\beta} \). Several cases arise:

(i) \(\exists \alpha \) such that \(K_{\beta} \cap (\{\alpha\} \times \beta N) \) is infinite.

(a) \(r_{\beta} \in f(\cup_{\alpha < \beta} P_{\alpha}) \subset \beta N - N \). Let \(P_{\beta} = \cup_{\alpha < \beta} P_{\alpha} \). In this case, \(P \) will be defined so that \(K_{\beta} \subseteq P \) hence \(K_{\beta} \) need not have a limit point in \(X^2 \).

(b) \(\alpha \in \cup_{\alpha < \beta} P_{\alpha} \). Choose \(s_{\beta} \in \beta N - (f[\cup_{\alpha < \beta} P_{\alpha}] \cup N) \) so that \((r_{\beta}, s_{\beta}) \in K_{\beta} - (G \cup K_{\beta}) \). Let \(P_{\beta} = \cup_{\alpha < \beta} P_{\alpha} \cup \{(r_{\beta}, s_{\beta})\} - N \).

(ii) We have an analogous case if \(\exists \) \(\alpha \) such that \(K_{\beta} \cap (\beta N \times \{s_{\beta}\}) \) is infinite.

(iii) If no such points exist, apply the lemma, using a simple cardinality argument, to obtain a point \((r_{\beta}, s_{\beta}) \) so that \(r_{\beta}, s_{\beta} \notin f[\cup_{\alpha < \beta} P_{\alpha}] \cup N \) and \((r_{\beta}, s_{\beta}) \in cl K_{\beta} - (G \cup K_{\beta}) \). Let \(P_{\beta} = \cup_{\alpha < \beta} P_{\alpha} \cup \{(r_{\beta}, s_{\beta})\} \).

So clearly, \(|P_{\beta}| = |\cup_{\alpha < \beta} P_{\alpha}| = |\beta| \) if \(\alpha > \omega \) and is finite otherwise. Equally clear is that \(P_{\beta} \supset P_{\alpha} \) for \(\alpha < \beta \).

CLAIM. \(f[P_{\beta}] \cap P_{\beta} = \emptyset \). Let \(p \in P_{\beta} \) and suppose \(\exists q \in P_{\beta} \) such that \(f(q) = p \). Note the following:

(i) Obviously, the inductive hypothesis guarantees that not both \(p, q \in \cup_{\alpha \in P_{\beta}} P_{\alpha} \).

(ii) If \(p \in \cup_{\alpha < \beta} P_{\alpha} \) and \(q = r_{\beta} \), we have \(f(r_{\beta}) = p \). So \(f(p) = r_{\beta} \). But \(r_{\beta} \) was chosen so that \(r_{\beta} \notin f[\cup_{\alpha < \beta} P_{\alpha}] \).

(iii) If \(p \in \cup_{\alpha < \beta} P_{\alpha} \) and \(q = s_{\beta} \), \(f(s_{\beta}) = p \), so \(f(p) = s_{\beta} \) and we have a contradiction as above.

(iv) If \(p = r_{\beta} \) and \(q = s_{\beta} \), we have \(f(s_{\beta}) = r_{\beta} \) so that \(f(r_{\beta}) = s_{\beta} \). But this gives \((r_{\beta}, s_{\beta}) \in G \), a contradiction.

(v) If \(p = s_{\beta} \) and \(q = r_{\beta} \), \(f(r_{\beta}) = s_{\beta} \), again a contradiction. The claim now follows.

The inductive construction of the example is now complete. Note that \(P^2 \) is countably compact.

REMARKS. (1) The example presented here is a partial negative answer to a question of J. Keesling, whose interest in the problem stems from research announced in [K] concerning hyperspaces. The question, to which I do not know the answer, is: If \(X \) is normal and countably compact and \(X^2 \) is countably paracompact, is \(X^2 \) countably compact? R. G. Woods [Wo] has shown that CH implies that if \(X \) is normal, countably compact, extremally disconnected and \(|C^*(X)| = 2^\omega \), then \(X \) is compact. Thus the present example is not normal assuming CH.

(2) The example presented here also answers in the negative the following question of Morita [M]: If \(X \) and \(Y \) are countably compact and \(X \times Y \) is an \(M \)-space, is \(X \times Y \) countably compact? The question had been answered in the negative by Steiner [S], assuming the continuum hypothesis. An \(M \)-space is the quasi-perfect preimage of a metric space. Note that \(X^2 \) is an \(M \)-space: It is the free union of a countably compact space and a countably infinite discrete space. See also [Wa, pp. 188–190].
(3) An example, due to Frolik, of countably compact spaces X and Y whose product is pseudocompact but not countably compact is presented by Ginsburg and Saks in [GS]. Only slight modification is needed to yield a countably compact space whose square is pseudocompact but not countably compact. Similar results can be obtained from the example given by Comfort in [C].

REFERENCES

DEPARTMENT OF MATHEMATICS, ALLEGHENY COLLEGE, MEADVILLE, PENNSYLVANIA 16335