AN INEQUALITY FOR FUNCTIONS OF EXPONENTIAL TYPE NOT VANISHING IN A HALF-PLANE

N. K. GOVIL

Abstract. Let \(f(z) \) be an entire function of order 1, type \(\tau \) having no zero in \(\text{Im } z < 0 \). If \(h_f(-\pi/2) = \tau, \ h_f(\pi/2) < 0 \) then it is known that \(\sup_{-\infty < x < \infty} |f'(x)| > (\tau/2) \sup_{-\infty < x < \infty} |f(x)| \). In this paper we consider the case when \(f(z) \) has no zero in \(\text{Im } z < k, k < 0 \) and obtain a sharp result.

1. If \(f(z) \) is an entire function of exponential type \(\tau \) and \(|f(x)| < M \) for real \(x \), then according to a well-known theorem due to S. N. Bernstein [1, p. 206]

\[
|f'(x)| < Mr, \quad -\infty < x < \infty.
\]

If \(h_f(\pi/2) = 0 \),

\[
h_f(\theta) = \limsup_{r \to \infty} \frac{\log|f(re^{i\theta})|}{r}
\]

is the indicator function of \(f(z) \), and \(f(x + iy) \neq 0 \) for \(y > 0 \), then it has been proved by Boas [2] that (1.1) can be replaced by

\[
|f'(x)| \leq M\tau/2, \quad -\infty < x < \infty.
\]

This result of Boas is in fact a generalization of the Erdös conjecture proved by Lax [4] because the class of asymmetric entire functions of exponential type \(\tau \) includes all functions \(p(e^{iz}) \) where \(p(z) \) is a polynomial of degree \(n < [\tau] \) and \(p(z) \neq 0 \) in \(|z| < 1 \).

For polynomials having all their zeros in \(|z| < 1 \), we have the following result due to Turán [6].

Theorem A. If \(p(z) \) is a polynomial of degree \(n \) having all its zeros in \(|z| < 1 \), then

\[
\max_{|z|=1} |p'(z)| \geq \frac{n}{2} \max_{|z|=1} |p(z)|.
\]

As a generalization of Theorem A, an inequality analogous to (1.3) for entire functions of order 1, and type \(\tau \) has been obtained by Rahman [5] and for polynomials having all its zeros in \(|z| < K, K > 0 \) by Govil [3]. In this
paper we generalize the result due to Rahman [5] and due to Govil [3] (in the case $K > 1$) and prove the following.

Theorem. Let $f(z)$ be an entire function of order 1, type τ having all its zeros in $\text{Im} \, z > k$, $k < 0$. If $h_f(\pi/2) < 0$, $h_f(-\pi/2) = \tau$ then
\[
\sup_{-\infty < x < \infty} |f'(x)| > \frac{\tau}{1 + \exp(\tau|k|)} \sup_{-\infty < x < \infty} |f(x)|.
\]

The result is best possible with equality for the function
\[
f(z) = \left(\frac{e^{iz} - e^{-i\tau}}{1 + e^{-\tau k}}\right).
\]

2. For the proof of the theorem, we need the following lemmas.

Lemma 1. If $f(z)$ is an entire function of exponential type τ and $|f(x)| \leq M$, $-\infty < x < \infty$, then
\[
|f(x + iy)| \leq Me^{\tau|y|}, \quad -\infty < x < \infty, \quad -\infty < y < \infty.
\]

Lemma 1 is a simple consequence of the Phragmén-Lindelöf principle and follows immediately from a result due to Pólya and Szegö (see [1, p. 82, Theorem 6.2.4]).

Lemma 2. Let $f(z)$ be an entire function of order 1, type τ, $h_f(\pi/2) < 0$, $|f(x)| \leq M$, $-\infty < x < \infty$, and let $g(z) = e^{iz}\text{con}\{f(z)\}$, where $\text{con}\{f(z)\}$ denotes the conjugate of $f(z)$. Then type $g \leq \tau$.

Proof of Lemma 2. If $g(z) = e^{iz}\text{con}\{f(z)\}$ is an entire function of order less than 1, then obviously type $g \leq \tau$, hence it is sufficient to prove the result when $g(z)$ is of order 1.

If $z = re^{i\theta}$ is a point of the upper half-plane, then
\[
|g(re^{i\theta})| = e^{-\tau \sin \theta} |f(re^{-i\theta})|,
\]
which gives by Lemma 1,
\[
|g(re^{i\theta})| \leq e^{-\tau \sin \theta} e^{\tau \sin \theta} \sup_{-\infty < x < \infty} |f(x)|
\]
\[
= \sup_{-\infty < x < \infty} |f(x)|.
\]

(2.2)

If $z = re^{i\theta}$ lies in the lower half-plane, the point $z = re^{-i\theta}$ will lie in the upper half-plane and since $h_f(\pi/2) < 0$, hence it follows by a result due to Pólya and Szegö (see [1, p. 82, Theorem 6.2.4]) that
\[
|g(re^{i\theta})| = e^{-\tau \sin \theta} |f(re^{-i\theta})|
\]
\[
\leq e^{-\tau \sin \theta} \sup_{-\infty < x < \infty} |f(x)|
\]
\[
\leq e^{\tau \tau} \sup_{-\infty < x < \infty} |f(x)|.
\]

(2.3)

On combining (2.2) and (2.3), we get
\[|g(re^{i\theta})| \leq e^{r\tau} \sup_{-\infty < x < \infty} |f(x)|, \quad 0 \leq \theta < 2\pi, \]

which gives that type \(g \leq \tau = \text{type } f \), and Lemma 2 follows.

Lemma 3. If \(f(z) \) is an entire function of order 1, type \(\tau \) such that \(h_f(-\pi/2) = \tau, h_f(\pi/2) < 0 \), \(f(z) \) has all its zeros in \(\text{Im } z > k, k < 0 \), then

\[(2.4) \sup_{-\infty < x < \infty} |g'(x)| \leq e^{r|x|} \sup_{-\infty < x < \infty} |f'(x)|, \]

where as in Lemma 2, \(g(z) \) stands for \(e^{iz\text{con}(f(z))} \) and \(\text{con}(f(\bar{z})) \) for the conjugate of \(f(\bar{z}) \).

Proof of Lemma 3. Let \(F(z) = f(z + ik) \) and \(G(z) = e^{iz\text{con}(F(\bar{z}))} = e^{-z}g(z - ik) \), where \(\text{con}(F(\bar{z})) \) denotes the conjugate of \(F(\bar{z}) \). Since \(f(z) \) has all its zeros in \(\text{Im } z > k, k < 0 \), \(h_f(-\pi/2) = \tau, h_f(\pi/2) < 0 \), the function \(F(z) \) is an entire function of order 1, type \(\tau \), has no zero in \(\text{Im } z < 0 \), \(h_{F}(\pi/2) = \tau \) and \(h_{F}(-\pi/2) < 0 \). Therefore the function \(F(z) \) belongs to the class \(P \). Further \(F_1(z) = e^{iz/2\text{con}(F(\bar{z}))} \) is an entire function of exponential type having no zero in \(\text{Im } z > 0 \) and satisfying \(h_{F}(\pi/2) > h_{F}(-\pi/2) \). Hence applying a result due to Levin (see [1, p. 129, Theorem 7.8.1]) to the function \(F_1(z) \), we get

\[|e^{iz/2\text{con}(F(z))}| > |e^{iz/2\text{con}(F(z))}| \quad \text{for } \text{Im } z > 0, \]

which implies

\[|e^{iz/2\text{con}(F(z))}| > |e^{iz/2\text{con}(F(z))}| \quad \text{for } \text{Im } z < 0, \]

and which implies

\[|F(z)e^{-iz/2}| > |e^{iz/2\text{con}(F(z))}| \quad \text{for } \text{Im } z < 0. \]

Thus

\[|F(z)| > |e^{iz\text{con}(F(z))}| \quad \text{for } \text{Im } z < 0. \]

Since \(G(z) = e^{iz\text{con}(F(\bar{z}))} \), we get

\[(2.5) \quad |F(z)| > |G(z)| \quad \text{for } \text{Im } z < 0. \]

For \(k < 0 \), let \(F_k(z) \) denote the function \(F(z + ik) \) and \(G_k(z) \) the function \(G(z + ik) \). Then the function \(F_k(z) \) is an entire function of order 1, type \(\tau \). Also by Lemma 2, the function \(G_k(z) \) is an entire function of exponential type \(< \tau \). Since \(F(z) \) has no zero in \(\text{Im } z < 0 \), therefore \(F_k(z) \) has no zero in \(\text{Im } z < -k \), and hence no zero in \(\text{Im } z < 0 \), because \(k < 0 \). Further because \(h_{F_k}(-\pi/2) = h_{F}(-\pi/2) = \tau, h_{F_k}(\pi/2) = h_{F}(\pi/2) < 0 \), we get \(h_{F_k}(-\pi/2) > h_{F_k}(\pi/2) \) and therefore \(F_k(z) \) belongs to the class \(P \). Thus \(G_k(z) \) is an entire function of exponential type \(< \tau \) and \(F_k(z) \) an entire function of class \(P \), order 1 and type \(\tau \). Also by (2.5) we have \(|G_k(x)| < |F_k(x)|, \quad -\infty < x < \infty \), hence applying a result due to Levin (see [1, p. 226, Theorem 11.7.2]) and the fact that differentiation is a \(B \)-operator, we get \(|G_k(x)| < |F_k'(x)|, \quad -\infty < x < \infty \), which implies
(2.6) \[|G'(x + ik)| < |F'(x + ik)|, \quad -\infty < x < \infty, k < 0. \]

Since \[|F'(x + ik)| = |f'(x + 2ik)|, \quad \text{and} \quad |G'(x + ik)| = e^{-\tau k} |g'(x)|, \] (2.6) gives,

(2.7) \[|g'(x)| \leq e^{\tau k} |f'(x + 2ik)|, \quad -\infty < x < \infty. \]

Lastly applying the inequality (2.1) to \[|f'(x + 2ik)| \] and combining it with (2.7) we get

\[|g'(x)| \leq e^{\tau |k|} \sup_{-\infty < x < \infty} |f'(x)|, \]

from which the lemma follows.

Lemma 4. If \(f(z) \) is an entire function of exponential type \(\tau \), then

\[\sup_{-\infty < x < \infty} |f'(x)| + \sup_{-\infty < x < \infty} |g'(x)| > \tau \sup_{-\infty < x < \infty} |f(x)|, \]

where \(g(z) \) is the same as defined in Lemma 3.

Proof of Lemma 4. From the definition of \(g(z) \) it follows that on real axes,

\[|g'(x)| = |e^{ix} f'(x) + ire^{ix} f(x)| \]

\[> \tau |f(x)| - |f'(x)|. \]

Thus for \(-\infty < x < \infty \), \[|f'(x)| + |g'(x)| > \tau |f(x)|, \]

which gives

\[\sup_{-\infty < x < \infty} |f'(x)| + \sup_{-\infty < x < \infty} |g'(x)| > \tau \sup_{-\infty < x < \infty} |f(x)|, \]

and Lemma 4 is proved.

3. **Proof of the Theorem.** We have by Lemma 3,

(3.1) \[\sup_{-\infty < x < \infty} |g'(x)| \leq e^{\tau |k|} \sup_{-\infty < x < \infty} |f'(x)|. \]

Also by Lemma 4,

(3.2) \[\sup_{-\infty < x < \infty} |f'(x)| + \sup_{-\infty < x < \infty} |g'(x)| \geq \tau \sup_{-\infty < x < \infty} |f(x)|. \]

Combining (3.1) and (3.2) we get

\[\sup_{-\infty < x < \infty} |f'(x)| + e^{\tau |k|} \sup_{-\infty < x < \infty} |f'(x)| \geq \tau \sup_{-\infty < x < \infty} |f(x)|, \]

which implies

\[\sup_{-\infty < x < \infty} |f'(x)| \geq \frac{\tau}{1 + e^{\tau |k|}} \sup_{-\infty < x < \infty} |f(x)|. \]

This completes the proof of the theorem.

I am extremely grateful to Professor Q. I. Rahman for his kind help in the preparation of this paper.

References

Department of Mathematics, Indian Institute of Technology, New Delhi-110029, India

Département de Mathématiques, Université de Montréal, Montréal, Canada