THE STRICT DUAL OF B^*-ALGEBRAS

JOHN W. DAVENPORT

Abstract. If A is a closed two-sided ideal in the B^*-algebra X, then $(X, \beta_A)^*$ with the strong topology is isomorphic to A^*, where β_A is the strict topology on X.

Introduction. Let $C_b(X)$ be the Banach space of all real-valued bounded continuous functions on X. It is well known that if X is compact then $(C_b(X), \sigma)^*$ is isomorphic to $M(X)$ where $M(X)$ is the bounded Radon measure on X and σ is the usual topology of uniform convergence. However, if X is only locally compact Hausdorff then $(C_b(X), o)^*$ is isomorphic to $M_\beta(X)$ where βX is the Stone-Čech compactification of X. In 1958, R. C. Buck [1] showed that if $C_b(X)$ is given the strict topology generated by $C_0(X)$, denoted as the β topology, then $(C_b(X), \beta)^*$ is isomorphic to $M(X)$. We show that this result is essentially due to the fact that $C_0(X)$ is a closed two-sided ideal of $C_b(X)$.

1. Definition. Let X be a β^*-algebra and A a closed two-sided ideal in X. The strict topology of X with respect to A, denoted as the β_A topology on X, is the locally convex topology generated by the seminorms $(\lambda_a)_{a \in A}$ and $(\rho_a)_{a \in A}$ where $\lambda_a(x) = ||ax||$ and $\rho_a(x) = ||xa||$. We will denote X with the β_A topology by the pair (X, β_A). It is clear that β_A is a vector space topology in which multiplication is separately continuous.

2. Proposition. Let A be a closed two-sided ideal in the B^*-algebra X. Then A is β_A dense in X.

Proof. C. E. Rickart [3] has shown that A is an invariant subspace with respect to involution and, hence, A can be considered as a β^*-algebra. If $\{e_a|a \in A\}$ is an approximate identity in A [3, p. 245], then $e_\lambda x + xe_\lambda - e_\lambda xe_\lambda$ converges to x in the β_A topology for each $x \in X$. Since A is a two-sided ideal, the set $\{e_\lambda x + xe_\lambda - e_\lambda xe_\lambda|\lambda \in \Lambda\}$ is contained in A and, hence, the result follows.

3. Proposition. Let A be a closed two-sided ideal in the B^*-algebra X. Then $(X, \beta_A)^* = \{f \cdot a|a \in A, f \in X^*\}$.

Presented to the Society, October 18, 1974; received by the editors December 19, 1975 and, in revised form, October 15, 1976.

AMS (MOS) subject classifications (1970). Primary 46B10, 46L05.

Key words and phrases. B^*-algebra, strict topology.

© American Mathematical Society 1977

309
Proof. Let \(f \in (X, \beta_A)^* \) and \(\phi \) be the inclusion mapping of \(A \) into \(X \). Then \(f \phi \in A^* \). Since \(A \) is a B*-algebra there exists an \(a \in A \) and \(g \in A^* \) such that \(f \phi = g \cdot a \) where \(g \cdot a(x) = g(ax) \) [5]. By the Hahn-Banach theorem \(g \) can be extended to an \(h \in X^* \) such that \(g = h \phi \). Let \(\{e_a\} \) be an approximate identity for \(A \). Since \(\{e_a x + xe_a - e_a xe_a\} \) converges to \(x \) in the \(\beta_A \) topology and \(A \) is a closed two-sided ideal, we have that

\[
f(x) = \lim_{a} f(e_a x + xe_a - e_a xe_a) = \lim_{a} g \circ a(e_a x + xe_a - e_a xe_a) = g(ax) = h(ax) = h \cdot a(x).
\]

To get the reverse inclusion, it is sufficient to observe that if \(x_a \) converges to \(x \) in the \(\beta_A \) topology and \(a \in A \), then \(ax_a \) converges to \(ax \) in the norm topology. Thus, for \(h \in X^* \), \(h \cdot a(x_a) \) converges to \(h \cdot a(x) \) and, therefore, \(h \cdot a \) is \(\beta_A \) continuous.

4. Lemma. Let \(A \) be a closed two-sided ideal in the B*-algebra \(X \) and \(S \) a \(\beta_A \) bounded subset of \(X \). Then \(\sup\{||x_a|| : x \in S, a \in A, ||a|| < 1\} \) is finite.

Proof. For each \(x \in S \), define \(T_x \) from \(A \) into \(A \) by \(T_x a = xa \). The map \(T_x \) is clearly linear and continuous. Since \(S \) is a \(\beta_A \) bounded subset, for each \(a \in A \), there exists an \(M(a) > 0 \) such that \(\sup_{x \in S} \{||T_x a|| = ||xa||\} < M(a) \). Hence, by the uniform boundedness principle, there exists an \(M > 0 \) such that \(||T_x|| < M \) for all \(x \in S \). But

\[
||T_x|| = \sup_{||a|| < 1} ||T_x a|| = \sup_{||a|| < 1} \{||x a|| : a \in A, ||a|| < 1\}
\]

and, hence, the Lemma follows.

The strong topology on \((X, \beta_A)^*\) is defined to be the topology of uniform convergence on the \(\beta_A \) bounded subsets of \((X, \beta_A)\). Using this topology, we have the following result.

5. Theorem. If \(A \) is a closed two-sided ideal in the B*-algebra \(X \), then \(((X, \beta_A)^*, \gamma)\) is isomorphic to \(A^* \), where \(\gamma \) is the strong topology on \((X, \beta_A)^*\).

Proof. From Proposition 2 we have that \(A \) is \(\beta_A \) dense in \(X \). Let \(\phi \) be the inclusion mapping of \(A \) into \(X \) and let \(\phi^* \) be the adjoint mapping of \((X, \beta_A)^*\) into \(A^* \). We now show that \(\phi^* \) is an isomorphism.

Since \(A \) is \(\beta_A \) dense in \(X \), it follows that \(\phi^* \) is one-to-one. Let \(f \in A^* \). Then \(f = g \cdot a \) for some \(a \in A \) and \(g \in A^* \) where \(g \cdot a(x) = g(ax) \) [5]. By the Hahn-Banach theorem, we can extend \(g \) to all of \(X \) to obtain \(\tilde{g} \in X^* \) such that \(\tilde{g}|_A = g \). Since \(\phi^*(\tilde{g} \cdot a)(b) = \tilde{g} \cdot a(\phi(b)) = g \cdot a(b) \) for all \(b \in A \), it follows that \(\phi^* \) is onto.

The continuity of \(\phi^* \) is true since norm bounded sets are also \(\beta \) bounded sets. To show that \(\phi^{*-1} \) is continuous, it is sufficient to show that if \(\{f_n\} \) is a sequence in \(A^* \) that converges to \(f \in A^* \), then \(\phi^{*-1}(f_n) = F_n \) converges in the strong topology to \(\phi^{*-1}(f) = F \).
Let S be a β_A bounded set. By Lemma 4, there exists a number $M > 0$ such that
\[\sup \{ \| xa \| : x \in S, a \in A \text{ and } \| a \| < 1 \} < M. \]

Let $\varepsilon > 0$. Since $\{ f_n \}$ converges to f there exists an N such that for all $n > N$, $\| f_n - f \| < \varepsilon / 3M$. Since $\{ f_n \} \in Z^*$ and $\{ f \}$ is totally bounded, for each $k > 0$, there exists $a_k \in A$, $g_k \in A^*$ and $g_{nk} \in A^*$ satisfying
\begin{align*}
(5.1) & \quad f_n = g_{nk} \cdot a_k \text{ and } f = g_k \cdot a_k, \\
(5.2) & \quad \| f_n - g_{nk} \| < 1/k \text{ and } \| f - g_k \| < 1/k, \\
(5.3) & \quad \| a_k \| < 1 [4].
\end{align*}

Now $F_n = G_{nk} \cdot a_k$ and $F = G_k \cdot a_k$, where G_{nk} is a Hahn-Banach extension of g_{nk} and G_k is a Hahn-Banach extension of g_k. We choose k such that $1/k < \varepsilon / 3M$. The continuity of ϕ^{*-1} now follows from
\begin{align*}
\sup_{x \in S} || F_n(x) - F(x) || \\
& = \sup_{x \in S} \| G_{nk} \cdot a_k(x) - G_k \cdot a_k(x) \| = \sup_{x \in S} \| G_{nk}(x) - G_k(x) \| \\
& < \sup_{x \in S} \| g_{nk}(x) - f_n(x) \| + \sup_{x \in S} \| f_n(x) - f(x) \| \\
& + \sup_{\| x \| < M} \| f(x) - g_k(x) \| \\
& < \| g_{nk} - f_n \| M + \| f_n - f \| M + \| f - g_k \| M < \varepsilon.
\end{align*}

6. Corollary. Let X be a locally compact space and $C_b(X)$ the algebra of bounded continuous real-valued functions on X. Let $A = C_0(X)$, the set of functions in $C_b(X)$ that vanish at infinity. Then $(C_b(X), \beta_A)^*$ is isomorphic to $M(X)$ where $M(X)$ is the set of bounded Radon measures on X.

Proof. This follows from Theorem 5 since $C_0(X)$ is a closed two-sided ideal in $C_b(X)$ and $C_0(X)^* = M(X)$ by the Riesz Representation Theorem.

This is R. C. Buck's result published in 1958 [1].

Let A be a B^*-algebra. The double centralizer on A, denoted as $M_d(A)$, is the set of pairs (T', T'') of mappings from A into A that satisfy $a(T'b) = (T''a)b$ for all $a, b \in A$. If $(T', T'') \in M_d(A)$, then T' and T'' are continuous linear maps on A and $\| T' \| = \| T'' \|$, so that under the usual operations of addition and multiplication, $M_d(A)$ is a Banach algebra where $\| (T', T'') \| = \| T'' \|$. By defining $(T', T'')^* = (T''^*, T'^*)$, where $T'^*(a) = (T'(a^*))^*$ and $T''^*(a) = (T''(a^*))^*$ for all $a \in A$, then $(T', T'')^* \in M_d(A)$ and thus $M_d(A)$ is a B^*-algebra.

If we define a map $\mu: A \to M_d(A)$ by the formula $\mu(a) = (L_a, R_a)$ where $L_a(x) = ax$ and $R_a(x) = xa$ for all $x \in A$, then μ is an isometric *-
isomorphism from A into $M_d(A)$ and $\mu(A)$ is a closed two-sided ideal in $M_d(A)$ [2]. If A is commutative then $M_d(A)$ is isometrically *-isomorphic to the algebra of multipliers as studied by Wang [6]. For a more detailed account of the theory of double centralizers on a B^*-algebra, we refer the reader to [2].

7. **Corollary.** If A is a B^*-algebra then $(M_d(A), \beta_A)^*$ under the strong topology is a Banach space that is isometrically isomorphic to A^*.

Proof. The isomorphism follows from Theorem 5, since A can be considered as a closed two-sided ideal of $M_d(A)$. Since a B^*-algebra has an approximate identity uniformly bounded by one, it follows from Lemma 4 that the β_A bounded subsets of $M_d(A)$ are norm bounded. Hence the strong topology on $(M_d(A), \beta_A)^*$ is the usual norm topology. The isometry follows from the fact that $f(X) = \lim_a f(X\mu(e_a))$ where $f \in (M_d(A), \beta_A)^*$, $X \in M_d(A)$ and $\{e_a\}$ is an approximate identity on A.

This is D. C. Taylor's result published in 1970 [5].

References

DEPARTMENT OF MATHEMATICS, JAMES MADISON UNIVERSITY, HARRISONBURG, VIRGINIA 22801