CANONICAL OBJECTS IN KIRILLOV THEORY
ON NILPOTENT LIE GROUPS

RICHARD C. PENNEY

ABSTRACT. It is shown that to each element f in the dual space of the Lie
algebra of a nilpotent Lie group there is a uniquely defined subgroup K_f for
which the representation corresponding to f is inducible from a square-
integrable-modulo-its-kernel representation of K_f.

I. Introduction. Let G be a connected, simply connected nilpotent Lie group
with Lie algebra \mathfrak{g}. Let U be an irreducible unitary representation of G.
Under the Kirillov correspondence U corresponds to a unique orbit \mathcal{O} of the
coa-adjoint representation ad^* of G in the dual space \mathfrak{g}^*. The correspondence
is obtained by selecting an f in \mathfrak{g} and a polarization for f and then forming
an appropriate induced representation (see [1]). The polarizations correspond-
ing to a given f are highly nonunique and noncanonical. In this paper we ask
the following question: To what extent is it possible to describe U by means
of objects canonically defined by \mathcal{O} (or f)? Our main result is the following
theorem.

Theorem. Associated with each $f \in \mathfrak{g}$ there is a canonical subalgebra \mathfrak{k}_f with
the following properties:

(a) If K_f is the corresponding subgroup to \mathfrak{k}_f and U_f^∞ is the representation of
K_f corresponding to $f|\mathfrak{k}_f$ then $\text{ind}(K_f, G, U_f^\infty)$ (the representation induced by
U_f^∞) is irreducible and equivalent to U.

(b) K_f is invariant under any automorphism which fixes f.

(c) U_f^∞ is square integrable modulo its kernel (see [4]).

This theorem seems useful from several points of view. \mathfrak{k}_f of course must
contain polarizations for f. Thus there is a distinguished class of polarizations.
Furthermore, let \mathfrak{k}_f^∞ be the radical of $f|\mathfrak{k}_f$ i.e.

$$\mathfrak{k}_f^\infty = \{X \in \mathfrak{k}_f \mid f([X, \mathfrak{k}_f^\infty]) = 0\}.$$

Then $f([\mathfrak{k}_f^\infty, \mathfrak{k}_f^\infty]) = 0$. Let H_f^∞ be the corresponding subgroup. Then $\exp(f \circ \log) | H_f^\infty = \chi_f^\infty$ defines a character of H_f^∞. Since U_f^∞ is square integrable
modulo its kernel, $\text{ind}(H_f^\infty, K_f, \chi_f^\infty)$ is primary and quasi-equivalent to U_f^∞
(see [4]). Hence $\text{ind}(H_f^\infty, G, \chi_f^\infty)$ is primary and quasi-equivalent to U. The
subgroups H_f^∞ can be used to describe in a canonical fashion the primary

Received by the editors June 10, 1976.

© American Mathematical Society 1977

175
projections onto the primary subspaces of nilmanifolds in much the same way that polarizations are used in the character formulas of [2]. We shall go into this in a later paper.

II. Proofs. In this section we shall define and study K_∞. K_∞ is defined by means of \mathcal{K}_∞. We shall at first assume only that G is a connected, simply connected, solvable Lie group. This will complicate some of our proofs but we feel that it sheds more light on the subject.

Let $f \in \mathfrak{g}^*$ and let $\mathcal{O}(f)$ be its orbit under ad^*. Let

$$\mathcal{S}(f) = \{ \lambda \in \mathfrak{g}^* | \mathcal{O}(f) + t\lambda = \mathcal{O}(f) \text{ for all } t \in \mathbb{R} \}. $$

$\mathcal{S}(f)$ is a subspace of \mathfrak{g}^* which is invariant under ad^*. Let $\mathcal{K}(f) = \bigcap \ker \lambda$ ($\lambda \in \mathcal{S}(f)$).

Lemma 1. $\mathcal{K}(f)$ is an ideal in \mathfrak{g}.

Proof. $\mathcal{K}(f)$ is invariant under $\text{ad}(\exp tX)$ for all $X \in \mathfrak{g}$. Differentiating we see $[X, \mathcal{K}(f)] \subset \mathcal{K}(f)$. Q.E.D.

Now we define a sequence of subalgebras of \mathfrak{g} as follows:

$$\mathcal{K}_1(f) = \mathcal{K}(f), \quad \mathcal{K}_k(f) = \mathcal{K}(f|\mathcal{K}_{k-1}(f)).$$

Let $\mathcal{K}_\infty(f) = \bigcap \mathcal{K}_k(f)$ ($k \in \mathbb{N}$).

Lemma 2. Let \mathfrak{g}_1 and \mathfrak{g}_2 be Lie algebras. Let $A: \mathfrak{g}_1 \to \mathfrak{g}_2$ be an automorphism and let $f_2 \in \mathfrak{g}_2^*$ and $f_1 \in \mathfrak{g}_1^*$ be such that $f_2 \circ A = f_1$. Then $\mathcal{K}_\infty(f_2) = A(\mathcal{K}_\infty(f_1))$.

Proof. Clearly $A^*(\mathcal{S}(f_2)) = \mathcal{S}(f_1)$. Hence $A(\mathcal{K}_1(f_1)) = \mathcal{K}_1(f_2)$. The result follows by induction since $\mathcal{K}_\infty(f) = \mathcal{K}_\infty(f|\mathcal{K}_1(f))$. Q.E.D.

We shall require a criterion for deciding when $\mathcal{K}_\infty = \mathfrak{g}$. First we need some notation. If $f \in \mathfrak{g}^*$ and \mathfrak{m} is subspace of \mathfrak{g}, let

$$\mathfrak{m}^f = \{ X \in \mathfrak{g} | f([X, M]) = 0 \text{ for all } M \in \mathfrak{m} \}. $$

Let $\mathfrak{m} = \mathfrak{m}^f$. Let $R = \{ x \in G | \text{ad} xf = f \}$.

Theorem 1. $\mathcal{K}_\infty \neq \mathfrak{g}$ iff there is a proper ideal \mathfrak{g}_1 of \mathfrak{g} containing \mathfrak{m}.

Proof. $\mathcal{K}_\infty \neq \mathfrak{g}$ iff $\mathcal{K}_1 \neq \mathfrak{g}$, so it suffices to consider \mathcal{K}_1. We claim that \mathcal{K}_1 contains \mathfrak{m}. Let

$$K = \{ x \in G | \text{ad}^* x(f)|\mathcal{K}_1 = f|\mathcal{K}_1 \}. $$

Since \mathcal{K}_1^\perp (the annihilator of \mathcal{K}_1) is \mathfrak{s}, we have $f + \mathcal{K}_1^\perp \subset \mathcal{O}(f)$. It follows that $\text{ad}^* K(f) = f + \mathcal{K}_1^\perp$. Hence $\dim R \setminus K = \dim \mathcal{K}_1^\perp$. The Lie algebra \mathcal{K} of K is \mathcal{K}_1^\perp. Then $\dim \mathcal{K} - \dim \mathfrak{m} = \dim R \setminus K = \dim \mathcal{K}_1^\perp$. The kernel of the map $X \to f([X, f])$ of \mathcal{K} into \mathfrak{m}^* is \mathfrak{m} and hence the image of \mathcal{K} has $\dim \mathcal{K} - \dim \mathfrak{m} = \dim \mathcal{K}_1^\perp$. The image is contained in \mathcal{K}_1^\perp so
KIRILLOV THEORY ON NILPOTENT LIE GROUPS

\[\mathfrak{K}_1 = \{ f([X, \cdot]) | X \in \mathfrak{K} \}. \]

Hence \(\mathfrak{K}_1 = \mathfrak{K}^4 \) and thus \(\mathfrak{S} \subseteq \mathfrak{K}_1 \), proving that \(\mathfrak{S} \) is contained in an ideal.

Conversely, let \(R_0 \) be the subgroup corresponding to \(\mathfrak{S} \). If \(\mathfrak{S} \) is an ideal containing \(\mathfrak{S}_x \), we claim that \(\mathfrak{S}_x \subseteq \mathfrak{S}(f) \). Let \(\mathfrak{L} = \mathfrak{S}_x \). Let \(L \) be the corresponding analytic subgroup of \(G \). The mapping \(\phi: x \to \text{ad}^* x(f) \) of \(L \) into \(\mathfrak{S}(f) \) maps into the affine subspace \(f + \mathfrak{S}_x \) and is constant on cosets of \(R_0 \) in \(L \). (Note that \(R_0 \subseteq L \).) It gives rise to a \(C^\infty \) map \(\phi \) of \(R_0 \) into \(f + \mathfrak{S}_x \). The tangent space at \(R_0 e \) in \(R_0 \) is canonically isomorphic with \(\mathfrak{S} \) while the tangent space at \(f \) in \(f + \mathfrak{S}_x \) is \(\mathfrak{S}_x \). The differential of \(\phi \) at \(R_0 e \) is given by \(X + \mathfrak{S}_x \to f([X, \cdot]) \). Now the bilinear form \(B = f([\cdot, \cdot]) \) is nondegenerate on \(\mathfrak{S} \) and hence \(\dim \mathfrak{S} = \dim \mathfrak{S}_x \). It follows that \(\dim \mathfrak{S} = \dim \mathfrak{S}_x \) so \(\mathfrak{S}_x \) is surjective at \(R_0 e \). Hence \(\mathfrak{S}_x \) is nonsingular at \(R_0 e \) and \(\phi \) is an open map in a neighborhood of \(R_0 e \). In particular \(\text{ad}^* L(f) \) contains a neighborhood of \(f \) in \(f + \mathfrak{S}_x \). Similar comments hold for \(f \) replaced by \(\text{ad}^* g(f), g \in L \). It follows that \(\text{ad}^* L(f) \) is open in \(f + \mathfrak{S}_x \). The same is true for any \(f' \in f + \mathfrak{S}_x \) so the orbits of \(L \) in \(f + \mathfrak{S}_x \) are all open. Since different orbits are disjoint and \(f + \mathfrak{S}_x \) is a union of orbits, this contradicts the connectedness of \(f + \mathfrak{S}_x \) unless there is only one orbit. Hence \(\text{ad}^* L(f) = f + \mathfrak{S}_x \), showing that \(f + \mathfrak{S}_x \subseteq \mathfrak{S}(f) \). Similarly \(f' + \mathfrak{S}_x \subseteq \mathfrak{S}(f) \) for any \(f' \in \mathfrak{S}(f) \). It follows that \(\mathfrak{S}_x \subseteq \mathfrak{S}(f) \). Q.E.D.

Recall that a subalgebra \(\mathfrak{K} \) of \(\mathfrak{K} \) is said to be subordinate to \(f \) if \(f([\mathfrak{K}, \mathfrak{K}]) = 0 \).

Corollary. If \(\mathfrak{K} \) is nilpotent, \(\mathfrak{K}_\infty \) is subordinate to \(f \).

Proof. Let \(f' = f|\mathfrak{K}_\infty \). By definition of \(\mathfrak{K}_\infty \), \(\mathfrak{K}_\infty (f') = \mathfrak{K}_\infty \). Hence there is no proper ideal \(\mathfrak{S} \) containing \(\mathfrak{S}(f') \). Since \(\mathfrak{K}_\infty \) is nilpotent, this implies that \(\mathfrak{S}(f') = \mathfrak{K}_\infty \). Obviously \(\mathfrak{S}(f') \) is subordinate. Q.E.D.

Definition. Let \(\mathfrak{K}_x = (\mathfrak{K}_\infty)^f \cap \text{normalizer}(\mathfrak{K}_\infty) \). Let \(K_1 \) be the corresponding connected analytic subgroup.

Proposition. \(\mathfrak{K}_\infty = (\mathfrak{K}_\infty)^f \cap \text{normalizer}(\mathfrak{K}_\infty) \). Let \(K_1 \) be the corresponding subgroup. For \(k \in K_1 \), \(\text{ad}^* (k) f|\mathfrak{K}_1 = f|\mathfrak{K}_1 \). Hence \(\text{ad}^* (k)(\mathfrak{K}_\infty) = \mathfrak{K}_\infty \) by Lemma 2. (Recall \(\mathfrak{K}_\infty = \mathfrak{K}_\infty (f|\mathfrak{K}_1) \). It follows that \(\mathfrak{K}_1 \subseteq \mathfrak{K}_\infty \). Let \(\mathfrak{K}_{n-1}(f) = \mathfrak{K}_1(f|\mathfrak{K}_{n-1}) \). (Note that \(\mathfrak{K}_n(f) \subseteq \mathfrak{K}_{n-1}(f) \).) Then \(\sum_i \mathfrak{K}_i \subseteq \mathfrak{K}_\infty \) and \(\mathfrak{K}_\infty \cap \mathfrak{K}_1 = \mathfrak{K}_1 \). As was shown in the proof of the above theorem, \(\mathfrak{K}_1 f = \mathfrak{K}_1 f \). Hence \(\mathfrak{K}_1 f \cap \mathfrak{K}_{n-1} = \mathfrak{K}_1 \). It follows that \(\mathfrak{K}_1 f = \mathfrak{K}_1 f \cap \mathfrak{K}_{n-1} = \mathfrak{K}_1 \). Hence \(\mathfrak{K}_1 f \subseteq \mathfrak{K}_\infty \). Obviously \(\mathfrak{K}_\infty \subseteq \mathfrak{K}_1 f \) so we have shown \(\mathfrak{K}_1 f = \mathfrak{K}_\infty \). That \(\text{ad}^* K_1 f = f + \mathfrak{K}_1 f \) is the same as the argument that \(\text{ad}^* K_1 f = f + \mathfrak{K}_1 f \) done in the above theorem. Q.E.D.

Corollary. In the notation of the above proof \(\mathfrak{K}_\infty = \sum \mathfrak{K}_i \).

Proof. Both \(\mathfrak{K}_\infty \) and \(\sum \mathfrak{K}_i \) contain \(\mathfrak{S} \) and both have the same orthogonal complement under \(B_f \). Hence they have the same dimension. Q.E.D.
Corollary. Let $f_\infty = f|_{\mathcal{X}_\infty}$. Then the K_∞ orbit of f_∞ is an affine subspace of \mathcal{X}_∞.

Now we once again assume that G is nilpotent. Let $f_\infty = f|_{\mathcal{X}_\infty}$ and let U^∞ be the irreducible representation of K_∞ corresponding to f_∞ under the Kirillov correspondence.

Theorem 2. $\text{ind}(K_\infty, G, U^\infty)$ is irreducible and corresponds to $0(f)$ under the Kirillov correspondence. Also U^∞ is square integrable modulo its kernel.

Proof. From the above corollary f_∞ has a flat orbit so it follows from the Moore-Wolf theorem [4] that U^∞ is square integrable modulo its kernel.

To prove the irreducibility let $\mathcal{X}_1(f)$ and $\mathcal{X}_1(f)$ be as before. Let H_1 and K_1 be the corresponding subgroups. Let $K_{\infty,1} = K_\infty(f|_{\mathcal{X}_1})$. K_1 fixes $f|_{\mathcal{X}_1}$ so K_1 normalizes \mathcal{X}_∞ and hence K_1 normalizes $K_{\infty,1}$. From Corollary 3 it follows that $K_\infty = K_1K_{\infty,1}$. Let $U^{1,1}$ be the representation of $K_{\infty,1}$ corresponding to $f|_{\mathcal{X}_{\infty,1}}$ and let $U^1 = \text{ind}(K_{\infty,1}, H_1, U^{1,1})$. By induction U^1 is irreducible and corresponds to $f_1 = f|_{\mathcal{X}_1}$. Let L be the stabilizer of U^1 in G – i.e.

$$L = \{ x \in G | U^1(x \cdot x^{-1}) \approx U^1 \}.$$

$x \in L$ if $\text{ad}^* x(f_1)$ is in the H_1 orbit of f_1 – i.e. iff $\text{ad}^* x(f_1) = \text{ad}^* y(f_1)$ for some $y \in H_1$. This is equivalent to saying $\text{ad}^* y^{-1} x(f_1) = f_1$ – i.e. $x \in K'_1 H_1$ where $K'_1 = \{ x \in G | \text{ad} x(f_1) = f_1 \}$. It follows from standard arguments that K'_1 is connected (see [1, I.3.3], e.g.) and that the Lie algebra of K'_1 is precisely $\mathcal{X}_1' = \mathcal{X}_1$. Hence $K'_1 = K_1$ and $L = K_1 H_1$. U^1 extends to a representation V of L. In fact, $K_{\infty} = K_1 K_{\infty,1} \subset L$. Let $V = \text{ind}(K_{\infty}, L, U^\infty)$. Since $L = K_1 H_1$, $V|H_1 = \text{ind}(K_{\infty,1}, H_1, U^{1,1}) = U^1$. It now follows from Mackey's theorem [3] that $\text{ind}(L, G, V)$ is irreducible. From the theorem on inducing in stage this is just $\text{ind}(K_\infty, G, U^\infty)$. It is obvious that this representation corresponds to f – simply pick a polarization for f contained in \mathcal{X}_∞. Q.E.D.

References

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

Current address: Department of Mathematics, University of California, Berkeley, California 94720