OPERATORS IN THE COMMUTANT
OF A REDUCTIVE ALGEBRA

ROBERT L. MOORE

Abstract. Let \mathcal{A} be a reductive algebra. It is shown that there is a subspace \mathcal{M} that reduces \mathcal{A} and such that the commutant of $\mathcal{A}|\mathcal{M}$ is selfadjoint and the commutant of $\mathcal{A}|\mathcal{M}^\perp$ consists of hyporeductive operators. It is then shown that under a variety of conditions, if an operator T is in \mathcal{A}', then $T^*\in\mathcal{A}'$.

In [5], we made use of a decomposition of reductive operators on Hilbert space to deduce some results concerning the selfadjointness of the commutants of such operators. In that paper we also observed that a similar decomposition of a reductive operator algebra is possible. In this paper we produce such a decomposition and use it to answer a number of questions first raised by Rosenthal [9].

By an algebra, we will mean a weakly closed subalgebra (with identity) of the algebra of all (bounded) operators on a separable Hilbert space. If \mathcal{A} is an algebra and \mathcal{M} a subspace of \mathcal{H} then $\mathcal{A}\mathcal{M} = \{Af: A \in \mathcal{A} \text{ and } f \in \mathcal{M}\}$, and \mathcal{M} is invariant for \mathcal{A} if $\mathcal{A}\mathcal{M} \subseteq \mathcal{M}$. The lattice of subspaces invariant for \mathcal{A} is denoted by $\text{Lat } \mathcal{A}$. We also denote by \mathcal{A}^* the algebra $\{A^*: A \in \mathcal{A}\}$, and by \mathcal{A}' the algebra $\{B: AB = BA \text{ for all } A \in \mathcal{A}\}$. Finally, \mathcal{A} is reductive if $\mathcal{A}\mathcal{M} \in \text{Lat } \mathcal{A}$ implies $\mathcal{M}^\perp \in \text{Lat } \mathcal{A}$, or equivalently, if $\text{Lat } \mathcal{A} = \text{Lat } \mathcal{A}^*$.

The results for which we are aiming are Theorems 2 and 3, which state that for every reductive algebra \mathcal{A} there is a subspace $\mathcal{M}_0 \in \text{Lat } \mathcal{A} \cap \text{Lat } \mathcal{A}'$, such that $\mathcal{A}|\mathcal{M}_0$ is selfadjoint and $\text{Lat}(\mathcal{A}|\mathcal{M}_0^\perp) \subseteq \text{Lat}(\mathcal{A}|\mathcal{M}_0^\perp)$. Before we begin, we remark that certain techniques developed by Hoover [4] will also yield Theorems 2 and 3.

Theorem 1. Let \mathcal{A} be a reductive algebra and $\mathcal{M} \in \text{Lat } \mathcal{A}$. Let $X: \mathcal{M}^\perp \to \mathcal{M}$ and suppose that $T \in \mathcal{A}'$, where T has the form

$$T = \begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix}$$

according to the decomposition $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^\perp$. Then

1. $T^* \in \mathcal{A}'$.
2. $(\text{ran } T)^\perp \in \text{Lat } \mathcal{A}$ and $(\mathcal{A}|(\text{ran } T)^\perp)'$ is selfadjoint.
3. $\ker T \in \text{Lat } \mathcal{A}$ and $(\mathcal{A}|\ker T)'$ is selfadjoint.

Received by the editors February 8, 1977.

Key words and phrases. Reductive algebra, hyperinvariant subspace, hyporeductive operator.

© American Mathematical Society 1977
Proof. (1) All decompositions of vectors and operators are with respect to \(\mathcal{M} \) and \(\mathcal{M}^\perp \). Let \(\mathcal{N} \) be the subspace \(\{ \langle Xf, f \rangle : f \in \mathcal{M}^\perp \} \). Since \(T \in \mathcal{A}' \) it is easy to check that \(\mathcal{N} \in \text{Lat } \mathcal{A} \), and thus the subspace \(\mathcal{N}^\perp = \{ \langle g, -X^*g \rangle : g \in \mathcal{M} \} \) also lies in \(\text{Lat } \mathcal{A} \).

If \(A \in \mathcal{A} \) we can decompose \(A \) as \(A_1 \oplus A_2 \), since \(\mathcal{A} \) is reductive. If \(g \in \mathcal{M} \) we have

\[
(A_1 \oplus A_2) \langle g, -X^*g \rangle = \langle A_1g, -A_2X^*g \rangle.
\]

Since this vector must lie in \(\mathcal{N}^\perp \) it follows that \(-X^*A_1g = -A_2X^*g \) for any \(g \in \mathcal{M} \), and hence that \(X^*A_1 = A_2X^* \), which implies that \(T^* \in \mathcal{A}' \).

(2) Since \(T \in \mathcal{A}' \), \((\text{ran } T)^- \in \text{Lat } \mathcal{A} \). Let \(C \) be an operator on \((\text{ran } T)^- \) that lies in the commutant of \(\mathcal{A} |(\text{ran } T)^- \); we want to show that \(C^* \in (\mathcal{A} |(\text{ran } T)^-) \). Let \(C_1 \) be the operator on \(\mathcal{K} \) defined by

\[
C_1f = \begin{cases}
Cf, & f \in (\text{ran } T)^-; \\
0, & f \in \text{ran } T^+.
\end{cases}
\]

Then \(C_1 \in \mathcal{A}' \) and it will suffice to show that \(C_1^* \in \mathcal{A}' \).

Let \(T_1 = C_1T \); then \(T_1 \in \mathcal{A}' \). Moreover, since \(\mathcal{M} \) is invariant under \(C_1 \), it is easy to see that \(T_1 \) has the same form as \(T \), namely

\[
T_1 = \begin{pmatrix} 0 & \ast \\
0 & 0 \end{pmatrix}.
\]

It follows by part (1) that \(T_1^* \in \mathcal{A}' \), that is, for any \(A \in \mathcal{A} \), \(T^*C_1^*A = AT^*C_1^* \). Since \(T^* \in \mathcal{A}' \), \(T^*(AC_1^* - C_1^*A) = 0 \), that is, \(\text{ran } (AC_1^* - C_1^*A) \subseteq \ker T^* \). On the other hand \(\text{ran } C_1^* \subseteq (\text{ran } T)^- \) and \((\text{ran } T)^- \) reduces \(A \), so that

\[
\text{ran } (AC_1^* - C_1^*A) \subseteq (\text{ran } T)^- = \ker T^*.
\]

We conclude that \(AC_1^* - C_1^*A = 0 \), and \(C_1^* \in \mathcal{A}' \).

(3) Let \(U \) be the unitary operator \(\binom{0}{1} \). Since \(T^* \in \mathcal{A}' \), we have

\[
\begin{pmatrix} 0 & X^* \\
0 & 0 \end{pmatrix} = U^*T^*U \in (U^*\mathcal{A}U)'.
\]

By part (2), \([(U^*\mathcal{A}U)|(\text{ran } U^*T^*U)^-]' \) is selfadjoint. Thus \((\mathcal{A}|(\text{ran } T^-)' \) is selfadjoint and (3) follows because \((\text{ran } T^-) = \ker T^* \).

Corollary. Let \(\mathcal{A} \) be reductive and \(\mathcal{M} \in \text{Lat } \mathcal{A} \). Let \(Y: \mathcal{M} \to \mathcal{M}^\perp \) and suppose that \(S \in \mathcal{A}' \), where \(S = (0 1) \). Then

(1) \(S^* \in \mathcal{A}' \).
(2) \(\ker S \in \text{Lat } \mathcal{A} \) and \((\mathcal{A}|\ker S)' \) is selfadjoint.
(3) \((\text{ran } S)^- \in \text{Lat } \mathcal{A} \) and \((\mathcal{A}|\text{ran } S)' \) is selfadjoint.

Proof. Consider adjoints and apply the theorem.

Theorem 2. Let \(\mathcal{A} \) be a reductive algebra. There is a subspace \(\mathcal{M}_0 \) such that

(1) \(\mathcal{M}_0 \in \text{Lat } \mathcal{A} \);
(2) \((\mathcal{A}|\mathcal{M}_0)' \) is selfadjoint;
(3) there is no nonzero subspace \(\mathcal{M} \subseteq \mathcal{M}_0^\perp \) with properties (1) and (2).
Moreover, this subspace \mathcal{M}_0 reduces \mathcal{G} as well.

Proof. Let $\mathcal{F} = \{ \mathcal{M} \in \text{Lat} \mathcal{G} : (\mathcal{G} | \mathcal{M})' \text{ is selfadjoint} \}$. The family \mathcal{F} is nonempty since it contains the zero subspace. Suppose that $\{ \mathcal{M}_\alpha : \alpha \in B \}$ is a chain in \mathcal{F}; in order to apply Zorn’s lemma we would like to show that $\mathcal{M} = \bigvee \{ \mathcal{M}_\alpha : \alpha \in B \}$ is also in \mathcal{F}, for which it suffices to show that $(\mathcal{G} | \mathcal{M})'$ is selfadjoint.

Let T be an operator on \mathcal{M} such that $T \in (\mathcal{G} | \mathcal{M})'$. To show that $T^* \in (\mathcal{G} | \mathcal{M})'$ we must show that for all $A \in \mathcal{G} | \mathcal{M}$ and for all $f \in \mathcal{M}$ we have $T^*Af = AT^*f$, and in fact it will be enough to show this equality for all $f \in \bigcup \{ \mathcal{M}_\alpha : \alpha \in B \}$, because this set is dense in \mathcal{M}. On the other hand, in this case $f \in \mathcal{M}_\beta$ for some $\beta \in B$.

Decompose \mathcal{M} as $\mathcal{M}_\beta \oplus (\mathcal{M} \ominus \mathcal{M}_\beta)$; then (since $\mathcal{M}_\beta \in \text{Lat} \mathcal{G}$) if $A \in \mathcal{G} | \mathcal{M}$ we have

$$A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} \quad \text{and} \quad T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}.$$ \[Because f \in \mathcal{M}_\beta we have

$$T^*Af = \langle T_{11}^*A_1f, T_{12}^*A_2f \rangle \quad \text{and} \quad AT^*f = \langle A_1T_{11}^*f, A_2T_{12}^*f \rangle.$$ \[Since $T_{11} \in (\mathcal{G} | \mathcal{M}_\beta)'$ and $(\mathcal{G} | \mathcal{M}_\beta)'$ is selfadjoint, we have $T_{11}^*A_1 = A_1T_{11}^*$. Furthermore, the operator $(0 \, T_{12}^*)$ lies in $(\mathcal{G} | \mathcal{M}_\beta)'$ and by Theorem 1, so does its adjoint $(0_{T_{12}}^*)$ and it follows that $A_2T_{12}^* = T_{12}^*A_1$. Thus $T^*Af = AT^*f,$ $T^* \in (\mathcal{G} | \mathcal{M}_\beta)'$, and $\mathcal{M} \in \mathcal{F}$.

By Zorn’s lemma there exists a maximal element \mathcal{M}_0 of \mathcal{F}. \mathcal{M}_0 automatically satisfies requirements (1) and (2) of the theorem. Suppose there is a nonzero subspace \mathcal{M}_1 of \mathcal{M}_0 for which (1) and (2) hold. We assert that $\mathcal{M}_0 \oplus \mathcal{M}_1$ lies in \mathcal{F}, a fact which contradicts the maximality of \mathcal{M}_0. We must show that $(\mathcal{G} | \mathcal{M}_0 \oplus \mathcal{M}_1)'$ is selfadjoint. If S is an operator on $\mathcal{M}_0 \oplus \mathcal{M}_1$ such that $S \in (\mathcal{G} | \mathcal{M}_0 \oplus \mathcal{M}_1)$ then we decompose S as

$$S = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix},$$

where $S_{11} \in (\mathcal{G} | \mathcal{M}_0)'$ and $S_{22} \in (\mathcal{G} | \mathcal{M}_1)'$. By assumption $S_{11}^* \in (\mathcal{G} | \mathcal{M}_0)'$ and $S_{22}^* \in (\mathcal{G} | \mathcal{M}_1)'$. Moreover, the operator

$$\begin{pmatrix} 0 & S_{12} \\ 0 & 0 \end{pmatrix}$$

satisfies the hypotheses of Theorem 1 for the reductive algebra $(\mathcal{G} | \mathcal{M}_0 \oplus \mathcal{M}_1)$. Thus by that theorem the operator

$$\begin{pmatrix} 0 & 0 \\ S_{12}^* & 0 \end{pmatrix}$$

lies in $(\mathcal{G} | \mathcal{M}_0 \oplus \mathcal{M}_1)'$. Similarly we use the corollary to Theorem 1 to show that $(0_{S_{12}})$ lies in $(\mathcal{G} | \mathcal{M}_0 \oplus \mathcal{M}_1)'$. Since
we see that $S^* \in (\mathcal{A} | \mathcal{M}_0 \oplus \mathcal{M}_1)'$, and thus that $(\mathcal{A} | \mathcal{M}_0 \oplus \mathcal{M}_1)'$ is selfadjoint.

Finally, to show that $\mathcal{M}_0 \in \text{Lat } \mathcal{A}'$, suppose that $T \in \mathcal{A}'$ and write $T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}$

according to the decomposition $\mathcal{H} = \mathcal{M}_0 \oplus \mathcal{M}_0^\perp$.

Since \mathcal{M}_0 reduces \mathcal{A}, the operator $S = \begin{pmatrix} 0 & T_{12} \\ 0 & 0 \end{pmatrix}$

also lies in \mathcal{A}', and by Theorem 1, ker S reduces \mathcal{A} and $(\mathcal{A} | \text{ker}^{-} S)'$ is selfadjoint. However, ker$^{-} S$ is a subspace of \mathcal{M}_0^\perp so by the maximality of \mathcal{M}_0 it must be that ker$^{-} S = \{0\}$, that is, $T_{12} = 0$. Similarly we can show that $T_{21} = 0$ and thus \mathcal{M}_0 reduces T.

We use the notation Red \mathcal{B} to mean $\text{Lat } \mathcal{B} \cap \text{Lat } \mathcal{B}^*$, where \mathcal{B} is any algebra.

Theorem 3. Let \mathcal{A} be reductive and suppose that for no nonzero subspace \mathcal{M} in $\text{Lat } \mathcal{A}$ is it true that $(\mathcal{A} | \mathcal{M})'$ is selfadjoint. Then $\text{Lat } \mathcal{A} \subseteq \text{Red } \mathcal{A}'$.

Proof. Suppose $\mathcal{M} \in \text{Lat } \mathcal{A}$ and $T \in \mathcal{A}'$. Decompose \mathcal{H} as $\mathcal{M} \oplus \mathcal{M}^\perp$ and T as $T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}$;

let $S = \begin{pmatrix} 0 & T_{12} \\ 0 & 0 \end{pmatrix}$.

By Theorem 1, $(\text{ran } S)^- \in \text{Lat } \mathcal{A}$ and $(\mathcal{A} | (\text{ran } S)^-)'$ is selfadjoint. Hence, by the hypothesis of the theorem, ran $S = \{0\}$, that is, $T_{12} = 0$. Similarly $T_{21} = 0$ and $\mathcal{M} \in \text{Red } \mathcal{A}'$.

C. K. Fong [1] has used the word hyporeductive to refer to an operator T such that every hyperinvariant subspace of T reduces T.

Corollary. Let \mathcal{A} be as in Theorem 3. If $T \in \mathcal{A}'$ and \mathcal{M} is hyperinvariant for T then $\mathcal{M} \in \text{Red } \mathcal{A}'$. In particular, T is hyporeductive.

It follows from all the above that if \mathcal{A} is any reductive algebra and $T \in \mathcal{A}'$, then $T = T_1 \oplus T_2$ where $T_1^* \in (\mathcal{A} | \mathcal{M}_0)'$ and T_2 is hyporeductive. Thus if we desire to show that $T^* \in \mathcal{A}'$, it suffices to show that $T_2^* \in (\mathcal{A} | \mathcal{M}_0)'$.

In [9], P. Rosenthal introduced the following property which an operator T may have in connection with reductive algebras:
(P) If \mathfrak{A} is any reductive algebra such that \mathfrak{A}' contains T, then \mathfrak{A}' contains T^*.

Rosenthal then asked if T has property (P) under each of the following conditions:

1. T is polynomially compact,
2. $1 - T^*T$ is in some C_p class,
3. $T^* - T$ is in some C_p class,
4. T is a part of a finite-multiplicity backward shift.

We will show that each of the above conditions implies (P), but we need a preliminary result (Lemma 2).

In [5], the following lemma is proved:

Lemma 1. Let C be a nonzero compact operator, and suppose that B is an operator such that every subspace that reduces both B and C and has dimension greater than 1 properly contains a nonzero subspace that reduces B and C. Then B and C have a common reducing eigenvector.

The argument used to prove this lemma, with minor (and obvious) modifications will yield the following fact:

Lemma 2. Let B be an operator and C a nonzero compact operator. Suppose that

1. Every hyperinvariant subspace of B reduces B and C.
2. Every hyperinvariant subspace of B of dimension greater than 1 properly contains a nonzero hyperinvariant subspace of B.

Then B and C have a common reducing eigenvector.

Proof. See [5, p. 230].

We are now ready to answer Rosenthal's questions. It should be remarked that C. K. Fong [2] has proved part (1) of the following theorem.

Theorem 4. An operator T has property (P) under any one of the following conditions:

1. T is polynomially compact,
2. $T^* - T$ is in some C_p class,
3. $1 - T^*T$ is in some C_p class,
4. T is a part of some finite-multiplicity backward shift.

Proof. (4) follows from (3), because the multiplicity of the shift of which T is a part is the rank of $\sqrt{1 - T^*T}$. (See [3, p. 278].) If this rank is finite then so is the rank of $1 - T^*T$.

Next we remark that each of the conditions (1), (2), (3) is inherited by direct summands, and that each condition guarantees the existence of hyperinvariant subspaces [8, Corollaries 6.13, 6.15, 6.16] and [7, Theorem 1.1].

We will prove in detail that (2) implies that (P) holds; the proofs for (1) and (3) are analogous. Let $C = T^* - T$ and suppose that C is in some C_p class. We also suppose that \mathfrak{A} is a reductive algebra and that $T \in \mathfrak{A}'$. Let \mathfrak{M}_0 be
the subspace of Theorem 2; note that \(M_0 \) reduces \(\mathcal{E} \), \(T \), and \(C \), and that \((T^*|\mathcal{M}_0) \in (\mathcal{E}|\mathcal{M}_0)'\). Thus it suffices to consider the case where \(T \) is hyporeductive (by the remark following the Corollary to Theorem 3).

Since \(T \) is hyporeductive, the space \(\mathcal{M}_1 \) spanned by all the eigenvectors of \(T \) reduces \(\mathcal{E} \), \(T \), and \(C \), and \((T^*|\mathcal{M}_1) \in (\mathcal{E}|\mathcal{M}_1)'\) (the last statement follows by Lemma 5 of [1]); thus it suffices to consider the restriction of \(\mathcal{E} \), \(T \), and \(C \) to \(\mathcal{M}_1^+ \); i.e., we consider the case where \(T \) has no eigenvalues and is hyporeductive.

After these reductions suppose \(C \) is nonzero. Because \(T \) is hyporeductive, every hyperinvariant subspace of \(T \) reduces \(T \) and \(C \). Further, suppose \(\mathcal{M} \) is a hyperinvariant subspace of \(T \), of dimension greater than 1. Then \(\mathcal{M} \) reduces \(T \) and \(C \), and \((T|\mathcal{M})^* - (T|\mathcal{M}) \) lies in some \(C_p \) class. Thus there is a hyperinvariant subspace of \(T \) properly contained in \(\mathcal{M} \). It now follows from the assumption that \(C \) is nonzero, and from Lemma 2, that \(T \) has a reducing eigenvector; however, we reduced to the case where \(T \) has no eigenvectors. Thus it must be that \(C = 0 \), which means that \(T^* = T \) and \(T^* \in \mathcal{E}' \). The proof is complete.

To show that (1) implies (P) let \(p \) be a polynomial such that \(p(T) = C \) is compact and proceed as above. It is necessary to know that an algebraic hyporeductive operator is normal [1, Theorem 4].

To show that (3) implies (P) let \(C = 1 - T^*T \) and proceed as above.

We remark that the proof of Theorem 4 also establishes the following fact:

Corollary. If \(T \) is hyporeductive and any one of conditions (1) through (4) holds, then \(T \) is normal.

References

DEPARTMENT OF MATHEMATICS, BUCKNELL UNIVERSITY, LEWISBURG, PENNSYLVANIA 17837