Operators in the commutant of a reductive algebra
HTML articles powered by AMS MathViewer
- by Robert L. Moore
- Proc. Amer. Math. Soc. 66 (1977), 99-104
- DOI: https://doi.org/10.1090/S0002-9939-1977-0454730-3
- PDF | Request permission
Abstract:
Let $\mathcal {A}$ be a reductive algebra. It is shown that there is a subspace $\mathcal {M}$ that reduces $\mathcal {A}$ and such that the commutant of $\mathcal {A}|\mathcal {M}$ is selfadjoint and the commutant of $\mathcal {A}|{\mathcal {M}^ \bot }$ consists of hyporeductive operators. It is then shown that under a variety of conditions, if an operator T is in $\mathcal {A}’$, then ${T^ \ast }$ is in $\mathcal {A}’$.References
- C. K. Fong, On operators with reducing hyperinvariant subspaces (preprint).
- Che Kao Fong, On commutants of reductive algebras, Proc. Amer. Math. Soc. 63 (1977), no. 1, 111–114. MR 440416, DOI 10.1090/S0002-9939-1977-0440416-8
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- T. B. Hoover, Operator algebras with reducing invariant subspaces, Pacific J. Math. 44 (1973), 173–179. MR 315477
- Robert L. Moore, Reductive operators that commute with a compact operator, Michigan Math. J. 22 (1975), no. 3, 229–233 (1976). MR 394246
- Robert L. Moore, Hyperinvariant subspaces of reductive operators, Proc. Amer. Math. Soc. 63 (1977), no. 1, 91–94. MR 435888, DOI 10.1090/S0002-9939-1977-0435888-9
- Carl Pearcy, J. R. Ringrose, and Norberto Salinas, Remarks on the invariant-subspace problem, Michigan Math. J. 21 (1974), 163–166. MR 343062
- Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77, Springer-Verlag, New York-Heidelberg, 1973. MR 0367682
- Peter Rosenthal, On commutants of reductive operator algebras, Duke Math. J. 41 (1974), 829–834. MR 358395
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 66 (1977), 99-104
- MSC: Primary 47C05; Secondary 47A65
- DOI: https://doi.org/10.1090/S0002-9939-1977-0454730-3
- MathSciNet review: 0454730