SCHUR MULTIPLIERS OF SOME
FINITE NILPOTENT GROUPS

DAVID A. JACKSON

Abstract. Let B denote the Burnside group, $B(p^n, d)$ and let $G = B/B_k$ where p is a prime and $1 < k < p$. We show that the Schur multiplier, $M(G)$, is a direct power of $\Psi(k, d)$ cyclic groups, each having order p^n, where $\Psi(k, d) = k^{-1} \sum_{\mu(k|n)} d^\mu$. (This is Witt's formula for the rank of F_k/F_{k+1} where F is free on d generators.) In addition we can show that $M(B(3, d))$ is elementary abelian of exponent 3 and rank $2(f) + 4(f) + 3(f)$.

1. Notation and a preliminary result. For any group G, $M(G)$ will be the Schur multiplier of G. The minimal number of generators for G will be denoted $d(G)$. When G is abelian we will sometimes refer to $d(G)$ as the rank of G and write $rk(G)$. $Z(G)$ will be the center of G and G' will be the commutator subgroup of G. G_k will be the kth term of the lower central series $G_1 = G$, $G_2 = G' = (G, G)$, $G_3 = (G_2, G)$,

Throughout this paper d will be a fixed positive integer, p will be a fixed prime and q will be p^a for some fixed positive integer a. F will be a free group on a set $\{x_1, x_2, \ldots, x_d\}$ of d generators, and $\Psi(k, d)$, the rank of F_k/F_{k+1}, will be abbreviated $\Psi(k)$. $B(q, d)$ will be the Burnside group with exponent q on d generators.

I thank N. Blackburn for showing me a proof of the following generalization of a theorem of R. C. Lyndon [7].

Theorem 1.1. Let $B = B(q, d)$. Then B_k/B_{k+1} is a direct sum of $\Psi(k)$ cyclic groups of order q, for $k < p$.

Proof. We claim that $F_k \cap F^q F_{k+1} = F^q F_{k+1}$ for $k < p$, hence $B_k/B_{k+1} \cong F^q F_{k+1}/F^q F_k \cong F^q F_{k+1}/F_{k+1}$.

To prove the claim we show by induction on j, for $1 < j < k$, that $F_j \cap F^q F_{k+1} \subseteq F^q F_{k+1}$. Given $w \in F_j \cap F^q F_{k+1}$, then $w \in F_{j-1} \cap F^q F_{k+1}$, so by induction $w \in F^q_{j-1} F_{k+1}$. After moving the factors from F_{k+1} to the right, we can write $w = a_1^{q_j} \cdots a_r^{q_j} x$ where $a_i \in F_{j-1}$ and $x \in F_{k+1}$. Now consider $(a_1 a_2 \cdots a_r)^q$ and apply Theorem 12.3.1 of [2] to get

$$(a_1 a_2 \cdots a_r)^q = a_1^{q_j} a_2^{q_j} \cdots a_r^{q_j} c_1^{q_j} \cdots c_r^{q_j}$$

Received by the editors September 22, 1976.

Key words and phrases. Schur multiplier, Burnside group, commutator calculus.

© American Mathematical Society 1977

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where \(y \in F_{k+1} \), each \(c_i \in F_j \) and \(q \) divides each \(e_i \) since \(k < p \). Observe that \(wx^{-1} = a_1^q \cdots a_r^q \in F_j \), so \((a_1a_2 \cdots a_r)^q \in F_j \). Since \(F/F_j \) is torsion free, \(a_1a_2 \cdots a_r \in F_j \). But then since \(q \) divides each \(l_i \), we get \(a_1^q \cdots a_r^q \in F_j F_{k+1} \).

2. The exponent of \(M(G) \).

Theorem 2.1. Let \(B = B(q, d) \), \(G = B/B_k \) where \(k < 2p \) and \(Q = G/N \) where \(N \subseteq G_l \) and \(l > k - p \). Then \(M(Q) \) has exponent dividing \(q \).

Proof. We may assume that \(d \) is chosen so that \(d(Q) = d(G) = d \) and that \(k \) is chosen so that class \(Q = \text{class } G = k - 1 \).

Consider an exact sequence \(M \rightarrow H \rightarrow Q \) where \(M \subseteq H \cap Z(H) \). Then \(H \) is a finite \(p \)-group with \(d(H) = d \) and class \(H < k \). Let \(\{z_1, z_2, \ldots, z_d\} \) be a set of generators for \(Q \) and let \(\{h_1, h_2, \ldots, h_d\} \) be a set of generators for \(H \) with \(\pi h_i = z_i \). For any commutator \(\tilde{c} \) in \(Q \) with entries from \(\{z_i\} \) we will let \(c \) denote the corresponding commutator in \(H \) with each \(z_i \) replaced by \(h_i \).

Observe that for any \(h_i, h_i^q \in M \), and thus is central. Hence given \(c = (h_1, \ldots, h_d) \), we have \((cH_{j+1})^q = (h_1^q, \ldots, h_j^q)H_{j+1} = H_{j+1} \). It follows that \(H_j/H_{j+1} \) has exponent dividing \(q \). We wish to show that \(H_{k-p+1} \) has exponent dividing \(q \). We show by induction on \(\lambda \), for \(0 < \lambda < p \), that \(H_{k-\lambda} \) has exponent dividing \(q \). Given \(\lambda < p \), write \(r = k - \lambda \), so that \(r + p > k \). Then for any commutator \(c = (h_1, \ldots, h_d) \in H \) we use, e.g., Lemma H2 of [9] to write

\[
1 = (h_1^q, \ldots, h_d^q) = c^qc_1^q \cdots c_d^q
\]

where the \(c_i \) are all commutators with \(r < \text{wtc}_i < k \). Since \(p + r > k \), \(q \) divides each \(e_i \). By induction the \(c_i \) have exponent dividing \(q \), so \(c \) has exponent dividing \(q \) as well. For an arbitrary element \(x \) of \(H_{k-\lambda} \), we may write \(x \) as a product of commutators of weight at least \(k - \lambda \) and apply Theorem 12.3.1 of [2] together with the above result for commutators to show that \(x \) has exponent dividing \(q \).

Thus to prove the theorem it suffices to show that \(M \subseteq H_{k-p+1} \). Since \(l > k - p + 1 \) and \(p > k - p + 1 \) we are done if we show either that \(M \subseteq H_l \) or that \(M \subseteq H_p \). We find the remainder of the argument easier to follow if we separate the cases \(l < p \) and \(l > p \).

Case (i) \(l < p \). We show in this case that \(M \subseteq H_l \). For each \(j \), choose a basis \(\{\tilde{c}_1Q_{j+1}, \ldots, \tilde{c}_rQ_{j+1}\} \) for \(Q_j/Q_{j+1} \), taking \(\{z_1Q_2, z_2Q_2, \ldots, z_dQ_2\} \) as the choice for \(Q/Q_2 \). Fix a weight preserving order of all of the \(\tilde{c} \) and relabel according to this order, so that (up to the choice of bases and the choice of the order) each element \(w \) of \(Q \) has a unique expression \(w = \prod \tilde{c}_i \) where \(\tilde{c}_i \in Q_j, \tilde{c}_iQ_{j+1} \) has order \(\beta_i \) in \(Q_j/Q_{j+1} \) and \(0 < \alpha_i < \beta_i \).

For \(j < l \), \(Q_j/Q_{j+1} \cong B_j/B_{j+1} \), hence \(r(j) = \Psi(j) \) and \(Q_j/Q_{j+1} \) is homocyclic of exponent \(q \). We have seen above that \(H_j/H_{j+1} \) has exponent dividing \(q \). Since \(Q_j/Q_{j+1} \) is an image of \(H_j/H_{j+1} \), the latter must have rank \(\Psi(j) \) and exponent \(q \) for \(j < l \). The corresponding sets
{c_1H_{j+1}, \ldots, c_{\Psi(l)}H_{j+1}} form bases for H_j/H_{j+1} when j < l. Choose, as well, bases for H_j/H_{j+1} when j > l. Order those c_i with weight less than l in the same way as the \tilde{c}_i were ordered, and extend this order to a weight preserving order of all of the c_i's. Then each element h of H has a unique expression $h = \prod c_i^{\alpha_i}$ where $c_i \in H_j$, c_iH_{j+1} has order β_i in H_j/H_{j+1} and $0 < \alpha_i < \beta_i$. If we apply the quotient map π to h, we get

$$\pi h = \prod_{w t c_i < l} c_i^{\alpha_i} = \prod_{w t c_i > l} \tilde{c}_i^{\alpha_i} \cdot \prod_{w t c_i > l} c_i^{\alpha_i}$$

so that the unique expression for πh has $\tilde{\alpha}_i = \alpha_i$ for $w t c_i < l$ and $\tilde{\alpha}_i$ equal to some α_i' when $w t c_i > l$. If $h \in M$, then $\pi h = 1$, so $\tilde{\alpha}_i = 0$ for all i. Hence $\alpha_i = 0$ for $w t c_i < l$ and $h \in H_j$.

Case (ii) $l > p$. The argument here is the same as in Case (i) except we observe that $Q_j/Q_{j+1} = B_j/B_{j+1} \cong H_j/H_{j+1}$ for $j < p$ and show that $M \subseteq H_p$.

Corollary 2.2. Let $B = B(q, d)$, $G = B/B_k$ where $p < k < 2p$ and let $M \twoheadrightarrow H \twoheadrightarrow G$ be exact with $M \subseteq H' \cap Z(H)$. Then $M \subseteq H_p$.

Corollary 2.3. Let $B = B(q, d)$ and $G = B/B_k$ where $k < 2p$. Then $M(G)$ has exponent dividing q.

Corollary 2.4. If Q is any group of exponent 3, then $M(Q)$ has exponent dividing 3.

Proof. Let $d = d(Q)$ and $B = B(3, d)$. Then $B = B/B_4$ (see [2]) and $Q = B/N$ for some $N \subseteq B_2$.

Corollary 2.4 is implicit in Remark 2.8 of Jones [5] since any group of exponent 3 satisfies the 2nd Engel condition.

We do not have any example to show that the condition on k in Theorem 2.1 is necessary. The example of Bayes, Kautsky, and Wamsley [1] of a group G with exponent 4 with $M(G)$ having exponent 8 shows that the hypothesis on l cannot be dropped.

3. The multiplier of groups having exponent q.

Theorem 3.1. If $B = B(q, d)$ and $G = B/B_k$ where $1 < k < p$, then $M(G)$ is homocyclic with exponent q and rank $\Psi(k)$.

Proof. Observe first that $B_k/B_{k+1} \twoheadrightarrow B/B_{k+1} \twoheadrightarrow G$ is exact with B_k/B_{k+1} in both the commutator and central subgroups of B/B_{k+1}. It follows from a theorem of Schur, see [3, V, Satz 23.5], that B_k/B_{k+1} is an epimorphic image of $M(G)$. Then by Theorem 1.1 we see that $\text{rk } M(G) > \Psi(k)$ and $|M(G)| > q^{\Psi(k)}$.

By Corollary 2.3, $M(G)$ has exponent dividing q, so it will suffice to show that $\text{rk } M(G) < \Psi(k)$. To this end we exhibit a presentation for G.

Let $\{c_iF_{k+1}, \ldots, c_{\Psi(k)}F_{k+1}\}$ be a basis for F_k/F_{k+1}. Then we claim that G has a presentation

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let \widetilde{G} be the group having this presentation. The obvious function $\widetilde{G} \to G$ preserves relations, and hence is a group epimorphism. \widetilde{G} is nilpotent of class $k - 1$ and $\text{rk}\, \widetilde{G}_j/\widetilde{G}_{j+1} \leq \Psi(j) = \text{rk}\, G_j/G_{j+1}$. We argue as in Theorem 2.1 that each $\widetilde{G}_j/\widetilde{G}_{j+1}$ has exponent dividing q. It follows that $|\widetilde{G}_j/\widetilde{G}_{j+1}| < |G_j/G_{j+1}|$, so that $|\widetilde{G}| < |G|$.

Having this presentation for G, it follows, as in [3, V, Satz 25.2], that $\text{rk}\, M(G) \leq \Psi(k)$. Since G is nilpotent of class $k - 1$, the relators in F_{k+1} contribute nothing to the number of generators of $M(G)$.

It would be of interest to know if F_{k+1} can be omitted from the set of relators in the above presentation. If so, the resulting presentation has deficiency $-\text{rk}\, M(G)$.

Proposition 3.2. If $B = B(q, d)$ and $G = B/B_p$ then $M(G)$ has exponent dividing q and $\text{rk}\, M(G) \leq \Psi(p)$.

Proof. Let $M \to H \to G$ be exact with $M \subseteq H' \cap Z(H)$. By Corollary 2.2, $M \subset H_p$. But $H_{p+1} = 1$, so $\text{rk}\, H_p \leq \Psi(p)$.

Using results of Lyndon [7], one can easily show that $$\text{rk}\, M(G) > \Psi(p) + d - \left(\frac{p + d - 1}{p}\right)$$ for $G = B/B_p$.

The difficulty in improving the result here is that we do not have a convenient representation group to exhibit.

4. The multipliers of groups of exponent 3. Throughout this section we let $B = B(3, d)$. B has been described by Levi and van der Waerden [6]. For details see, for example, [2]. Our present proofs of results in this section are tedious, but straightforward, and we condense or omit them.

Lemma 4.1. B has presentations with d generators and $r = d + 2(d) + 4(d) + 3(d)$ relators.

Proof. One such presentation is

\begin{align*}
\langle x_1, x_2, \ldots, x_d | &x_i^3 = 1, 1 \leq i \leq d, \\
(x_j, &x_i, x_i) = (x_j, x_i, x_j) = 1, 1 \leq i < j \leq d, \\
(x_k, &x_j, x_i, x_i) = (x_k, x_j, x_i, x_j) = (x_k, x_j, x_i, x_k) \\
&= (x_k, x_j, x_i)(x_k, x_i, x_j) = 1, 1 \leq i < j < k \leq d, \\
(x_l, &x_k, x_j, x_i) = (x_l, x_k, x_j, x_i) = (x_l, x_j, x_i, x_k) = 1, \\
&1 \leq i < j < k < l \leq d \rangle.
\end{align*}

Lemma 4.2. There is a group H and a short exact sequence $M \to H \to B$ where $M \subseteq Z(H) \cap H'$ and M is elementary abelian of exponent 3 and rank $r - d = 2(d) + 4(d) + 3(d)$.

The presentation in Lemma 4.1 can be regarded as a blueprint for
constructing such a representation group H. The details are tedious to verify.

Theorem 4.3. $M(B)$ is elementary abelian of exponent 3 and rank $r - d = 2(q^2) + 4(q^2) + 3(q^2)$.

Proof. This follows easily from Lemmas 4.1 and 4.2.

We remark that MacDonald [8] has previously computed the rank of $M(B(3,3))$ as an application of a computer algorithm.

For the case $q = 3$, we can improve on Proposition 3.2.

Proposition 4.2. Let $G = B/B_3$. Then $M(G)$ has exponent 3 and rank $\Psi(3)$.

Representation groups for $G = B/B_3$ are much easier to construct than those for B. We note, however, that, with a proper choice H of a representation group for B, H/H_4 is a representation group for G.

As a final remark, we note that essentially all of the multipliers that we are obtaining are nontrivial and that this is not surprising in view of D. L. Johnson’s recent paper [4].

References

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Current address: Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74074

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use