Schur multipliers of some finite nilpotent groups
HTML articles powered by AMS MathViewer
- by David A. Jackson
- Proc. Amer. Math. Soc. 66 (1977), 1-5
- DOI: https://doi.org/10.1090/S0002-9939-1977-0460459-8
- PDF | Request permission
Abstract:
Let B denote the Burnside group, $B({p^\alpha },d)$ and let $G = B/{B_k}$ where p is a prime and $1 < k < p$. We show that the Schur multiplier, $M(G)$, is a direct power of $\Psi (k,d)$ cyclic groups, each having order ${p^\alpha }$, where $\Psi (k,d) = {k^{ - 1}}{\Sigma _{n|k}}\mu (k/n){d^n}$. (This is Witt’s formula for the rank of ${F_k}/{F_{k + 1}}$ where F is free on d generators.) In addition we can show that $M(B(3,d))$ is elementary abelian of exponent 3 and rank $2(_2^d) + 4(_3^d) + 3(_4^d)$ .References
- A. J. Bayes, J. Kautsky, and J. W. Wamsley, Computation in nilpotent groups (application), Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973) Lecture Notes in Math., Vol. 372, Springer, Berlin, 1974, pp. 82–89. MR 0354822
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
- David L. Johnson, A property of finite $p$-groups with trivial multiplicator, Amer. J. Math. 98 (1976), no. 1, 105–108. MR 396742, DOI 10.2307/2373616
- Michael R. Jones, Some inequalities for the multiplicator of a finite group. II, Proc. Amer. Math. Soc. 45 (1974), 167–172. MR 352254, DOI 10.1090/S0002-9939-1974-0352254-2 F. Levi and B. L. van der Waerden, Über eine besondere Klasse von Gruppen, Abh. Math. Sem. Univ. Hamburg 9 (1933), 154-158.
- R. C. Lyndon, On Burnside’s problem, Trans. Amer. Math. Soc. 77 (1954), 202–215. MR 64049, DOI 10.1090/S0002-9947-1954-0064049-X
- I. D. Macdonald, A computer application to finite $p$-groups, J. Austral. Math. Soc. 17 (1974), 102–112. Collection of articles dedicated to the memory of Hanna Neumann, V. MR 0376853
- Ruth Rebekka Struik, On nilpotent products of cyclic groups, Canadian J. Math. 12 (1960), 447–462. MR 120272, DOI 10.4153/CJM-1960-039-x
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 66 (1977), 1-5
- MSC: Primary 20D15
- DOI: https://doi.org/10.1090/S0002-9939-1977-0460459-8
- MathSciNet review: 0460459