UNITARY PARTS OF CONTRACTIVE HANKEL MATRICES

JEFFREY R. BUTZ

ABSTRACT. For a Hankel matrix \(H = (c_{j+k}) \) which is a contraction, necessary and sufficient conditions are obtained for the existence of a nontrivial unitary part, and an explicit description of this unitary part is given.

1. Introduction. In what follows, \(l^2 \) will denote the usual class of square-summable complex sequences, \(L^2 \) will denote the class of Lebesgue measurable functions on the unit circle in the complex plane, and \(H^2 \) will denote the Hardy (closed) subspace of \(L^2 \) consisting of those functions in \(L^2 \) whose Fourier coefficients vanish on the negative integers. Functions which differ only on zero sets will be considered equal.

With a sequence \((c_0, c_1, \ldots)\) in \(l^2 \) we associate the Hankel matrix \(H = (c_{j+k}) \), where \(j, k = 0, 1, 2, \ldots \), acting on \(l^2 \). If we define \(\phi(e^{i\theta}) = c_0 + c_1 e^{i\theta} + c_2 e^{2i\theta} + \ldots \), then such a matrix may be realized as an operator on \(H^2 \), defined by

\[
Hx(e^{i\theta}) = P_+ \phi(e^{i\theta})x(e^{-i\theta}),
\]

where \(P_+: L^2 \to H^2 \) is the orthogonal projection.

A result of Nehari [4] states that a Hankel matrix \(H \) is bounded if and only if there exists a function \(f \in L^\infty \) such that

\[
(1-1) \ c_n = \frac{1}{2\pi} \int_0^{2\pi} \phi(e^{i\theta})e^{-in\theta} d\theta,
\]

and, in this case, \(f \) can be chosen so that \(\|f\|_\infty = \|H\| \). Such a function \(f \) is called a minifunction of \(H \).

We shall consider Hankel matrices which are contractions (\(\|Hx\| \leq \|x\| \)) on the Hardy space \(H^2 \). If a Hankel matrix is a contraction, then, by the theorem of Nehari, we can find a minifunction \(f \in L^\infty \) such that \(\|f\|_\infty = \|H\| \leq 1 \) and \(Hx(e^{i\theta}) = P_+ f(e^{i\theta})x(e^{-i\theta}) \) for \(x \in H^2 \).

2. The unitary part of a Hankel contraction. Following Sz.-Nagy and Foiaș [5], we say that a contraction \(T \) on a Hilbert space \(K \) is completely nonunitary if \(T \) has no nontrivial reducing subspace \(N \) such that the restriction \(T|N \) of \(T \) to \(N \) is unitary. It is known [5, Theorem 1.3.2] that for any contraction \(T \) on \(K \) we can find a unique orthogonal decomposition \(K = M \oplus M_1 \) such that \(T|M \) is unitary and \(T|M_1 \) is completely nonunitary. It is not excluded that \(M \) or

Received by the editors January 31, 1977.

© American Mathematical Society 1977
M_1 is possibly the subspace $\{0\}$. Furthermore, M is given by $M = \{x \in K: \|T^n x\| = \|x\| = \|T^m x\|, n = 1, 2, \ldots \}$ and is called the unitary subspace of T. $T|M$ is called the unitary part of T.

If $\psi(e^{i\theta}) \in L^\infty$, then the corresponding bounded Toeplitz operator $T_\psi: H^2 \to H^2$ is defined by $T_\psi: x(e^{i\theta}) \mapsto P_+ \psi(e^{i\theta}) x(e^{i\theta})$ for $x \in H^2$. In [1] Goor proved that if T_ψ is a Toeplitz contraction ($\|T_\psi\| < 1$, i.e., $|\psi(e^{i\theta})| < 1$ a.e.), then T_ψ is completely nonunitary unless ψ is a constant. This result may be used to obtain necessary and sufficient conditions for the existence of a nontrivial unitary part of a Hankel contraction. These conditions, together with a characterization of the unitary part, when it exists, are obtained as a corollary to the following.

Theorem 2.1. Let $H = (c_{j+k})$ be a Hankel contraction. Then H will have a nontrivial unitary subspace M only when there exists a minifunction $f(e^{i\theta})$ for H such that

(2.1) $|f(e^{i\theta})| = 1$ a.e. (so that $\|H\| = 1$), and

(2.2) $f(e^{i\theta}) f(e^{-i\theta}) = k^2$ a.e. for some constant k^2, $|k| = 1$.

In such a case, the minifunction $f(e^{i\theta})$ is unique, and M is given by the three equivalent expressions:

$$M = \left[e^{i\theta} f(e^{i\theta}) H^2 \right]^\perp \cap H^2,$$

where the orthogonal complement is in L^2,

(2.4) $M = \{x \in H^2: H^* H x = x\}$,

(2.5) $M = \{x \in H^2: \overline{k} H x = x\} \oplus \{x \in H^2: \overline{k} H x = -x\}$.

Proof. Suppose that a Hankel contraction H has a nontrivial unitary subspace. Then there exists some $x \neq 0$ in H^2 such that for H and its adjoint $H^* = \overline{H}$ we have $\|H^* x\| = \|x\| = \|\overline{H}^* x\|$ for $n = 1, 2, \ldots$. Taking $n = 1$ gives that

$$\|x\| = \|H x\| = \|P_+ f(e^{i\theta}) x(e^{-i\theta})\| < \|f(e^{i\theta}) x(e^{-i\theta})\| < \|x(e^{-i\theta})\|.$$

This implies that $P_+ f(e^{i\theta}) x(e^{-i\theta}) = f(e^{i\theta}) x(e^{-i\theta})$, so that $H x = f(e^{i\theta}) x(e^{-i\theta}) \in H^2$. It also immediately follows that the minifunction $f(e^{i\theta})$ must therefore be unique, cf. [2, p. 863]. Furthermore, we may apply a well-known corollary of the F. and M. Riesz theorem [3, p. 52] to the equality

$$\|f(e^{i\theta}) x(e^{-i\theta})\| = \|x(e^{-i\theta})\|$$

to conclude that $|f(e^{i\theta})| = 1$ almost everywhere on the unit circle. This establishes (2.1).

Taking now $n = 2$, we get

$$\|x\| = \|H^2 x\| = \|H f(e^{i\theta}) x(e^{-i\theta})\| = \|P_+ f(e^{i\theta}) f(e^{-i\theta}) x(e^{i\theta})\| < \|f(e^{i\theta}) f(e^{-i\theta}) x(e^{i\theta})\| < \|x(e^{i\theta})\|,$$

so that

$$H^2 x = f(e^{i\theta}) f(e^{-i\theta}) x(e^{i\theta}) = T_\psi x,$$

where $\psi(e^{i\theta}) = f(e^{i\theta}) f(e^{-i\theta})$. Continuing, we obtain
But (2.7) together with its analogue for H^{2n} (obtained by replacing $f(e^{i\theta})$ by $\tilde{f}(e^{i\theta})$) implies that the Toeplitz operator T_ϕ has a nontrivial unitary part. Therefore, by Goor's result, $f(e^{i\theta})f(e^{-i\theta}) = k^2$ for some constant k, $|k| = 1$. Hence, $k\tilde{f}(e^{i\theta}) = k\tilde{f}(e^{-i\theta})$, so that, by (1.1), $k_n x$ is real for all n.

Formulas (2.6) and (2.7) now reduce to

$$H^{2n+1}x(e^{i\theta}) = k^{2n}Hx(e^{i\theta}), \quad n = 0, 1, 2, \ldots,$$

$$H^{2n}x(e^{i\theta}) = k^{2n}x(e^{i\theta}), \quad n = 1, 2, \ldots,$$

valid for all x in the unitary subspace of H. Similar expressions are easily obtained for $H^{2n+1}x(e^{i\theta})$ and $H^{2n}x(e^{i\theta})$.

The maximal subspace on which H is unitary now becomes $M = \{x \in H^2: \|Hx\| = \|x\|\} = \{x \in H^2: H^*Hx = x\}$, giving (2.4). Furthermore, we then have $x \in M \iff f(e^{i\theta})x(e^{-i\theta}) \in H^2 \iff f(e^{-i\theta})x(e^{i\theta}) \perp e^{i\theta}H^2 \iff x(e^{i\theta}) \perp e^{i\theta}\tilde{f}(e^{-i\theta})\tilde{H}^2 \iff x \in \{e^{i\theta}f(e^{i\theta})H^2\} \cap H^2$, since $f(e^{-i\theta}) = k^2\tilde{f}(e^{i\theta})$. This establishes (2.3). Finally, since the matrix kH is real, hence selfadjoint, with $\|kH\| = 1$, we get (2.5). This completes the proof.

As a result of the above theorem, we then obtain a characterization of those Hankel matrices having nontrivial unitary subspaces.

Corollary 2.1. Let H be a Hankel contraction. Then a necessary and sufficient condition that H have a nontrivial unitary subspace is that there exist a constant k, $|k| = 1$, such that kH is real (hence selfadjoint) and that M in (2.5) satisfy $M \neq \{0\}$.

Using a result of Sz.-Nagy and Foiaş for completely nonunitary contractions, we can define a functional calculus for functions $u \in \mathcal{H}^\infty$. In particular, if $B(H^2)$ is the space of bounded operators on H^2, we then have the following.

Corollary 2.2. Let H be a Hankel contraction. If either $\|H\| < 1$ or kH is not real for all $k \in \mathbb{C}$, then the map $u \mapsto u(H)$ from the Hardy space \mathcal{H}^∞ into $B(H^2)$ defined by

$$u(H) = \text{strong lim}_{r \to 1^-} \sum_{k=0}^{\infty} a_k r^k H^k,$$

where $u(e^{i\theta}) = \sum_{k=0}^{\infty} a_k e^{ik\theta}$, is a contractive homomorphism of the algebra \mathcal{H}^∞ into $B(H^2)$.

This follows from the above theorem and Theorem III.2.1 of [5].

Theorem 2.1 can also be used to establish a property of the point spectrum of a bounded Hankel matrix.

Corollary 2.3. Let H be a bounded Hankel matrix. If $\lambda = \|H\|$ is an eigenvalue of H, then H is real. Hence, if aH is not real for any nonzero
(complex constant) α, then $|\lambda| < \|H\|$ holds for all eigenvalues λ of H (if any).

Proof. Without loss of generality, we can suppose that $\|H\| = 1$. (In such a case, the associated eigenspace $M = \{y \in H^2: Hy = y\}$ is well-known to be a reducing subspace for the operator H [5, Proposition 1.3.1].) If $y \neq 0$ satisfies $Hy = y$, then, by the proof of Theorem 2.1, $\overline{H} = \overline{\alpha}H$ and $H^2 y = \alpha y$ for some $|\alpha| = 1$. But since $H^2 y = y$, we get $\alpha = 1$, and hence $\overline{H} = \overline{\alpha}H = H$, which shows that H must be real.

Acknowledgement. The author wishes to thank Professor Philip Hartman for his encouragement and many helpful suggestions.

References

Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland 21218

Department of Mathematics, The University of Oklahoma, Norman, Oklahoma 73061
(Current address)