The Ising model limit of $\phi ^{4}$ lattice fields
HTML articles powered by AMS MathViewer
- by Jay Rosen
- Proc. Amer. Math. Soc. 66 (1977), 114-118
- DOI: https://doi.org/10.1090/S0002-9939-1977-0469019-6
- PDF | Request permission
Abstract:
We show that the $\lambda \to \infty$ limit of $\lambda {\phi ^4}$ lattice fields is an Ising model.References
- K. Wilson and J. Kogut, The renormalization group and the $\varepsilon$ expansion, Phys. Rep. 12C (1974), 75.
E. Brezin, J. C. LeGuilloui and J. Zinn-Justin, Field theoretical approach to critical phenomena, Phase Transitions and Critical Phenomena, Vol. VI, Academic Press, New York.
D. Isaacson, The critical behavior of the anharmonic oscillator, Rutgers Univ. preprint, 1976.
- James Glimm and Arthur Jaffe, Critical problems in quantum fields, Les méthodes mathématiques de la théorie quantique des champs (Colloq. Internat. CNRS, No. 248, Marseille, 1975) Éditions Centre Nat. Recherche Sci., Paris, 1976, pp. 157–173 (English, with French summary). MR 0479186
- Barry Simon and Robert B. Griffiths, The $(\phi ^{4})_{2}$ field theory as a classical Ising model, Comm. Math. Phys. 33 (1973), 145–164. MR 428998, DOI 10.1007/BF01645626
- F. Spitzer, Random fields and interacting particle systems, Mathematical Association of America, Washington, D.C., 1971. Notes on lectures given at the 1971 MAA Summer Seminar, Williams College, Williamstown, Mass. MR 0381041
- O. E. Lanford III and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Comm. Math. Phys. 13 (1969), 194–215. MR 256687, DOI 10.1007/BF01645487 R. Dobrushin, The description of a random field by means of conditional probabilities, Theor. Probability Appl. 13 (1968), 197-224.
- David Ruelle, Statistical mechanics: Rigorous results, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0289084
- A. Messager and S. Miracle-Sole, Equilibrium states of the two-dimensional Ising model in the two-phase region, Comm. Math. Phys. 40 (1975), 187–196. MR 368676, DOI 10.1007/BF01609399 P. Billingsly, Convergence of probability measures, Wiley, New York, 1968.
- Barry Simon, The $P(\phi )_{2}$ Euclidean (quantum) field theory, Princeton Series in Physics, Princeton University Press, Princeton, N.J., 1974. MR 0489552
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 66 (1977), 114-118
- MSC: Primary 82.60
- DOI: https://doi.org/10.1090/S0002-9939-1977-0469019-6
- MathSciNet review: 0469019