A HELLY TYPE THEOREM ON THE SPHERE

MEIR KATCHALSKI

ABSTRACT. This paper establishes a Helly type theorem for convex sets in S_n, the n-dimensional unit sphere.

1. Introduction. Let S_n denote the n-dimensional unit sphere in Euclidean $(n + 1)$-dimensional space, R^{n+1}.

A subset of S_n will be called convex if it is the intersection of S_n with a convex cone with apex 0 in R^{n+1}.

A subset of S_n will be called strongly convex if it is convex and does not contain antipodal points.

Thus a set consisting of two antipodal points is convex but not strongly convex.

For other definitions of convex sets in S_n and for a survey of Helly type theorems see [2]. For standard notation and terminology see [3].

M. J. C. Baker has proven in [1] the following

THEOREM. For all positive integers n and t, if the intersection of each $n + 1$ members of a family of at least $n + 1 + 2t$ strongly convex sets in S_n is nonempty then the intersection of some $n + 1 + t$ members of the family is nonempty.

The purpose of this paper is to generalize Baker’s result by proving

THEOREM A. Let n and t be positive integers and let \mathcal{A} be a family of $n + 1 + t$ convex sets in S_n.

If every $n + 1$ members of \mathcal{A} have nonempty intersection then the intersection of some $n + 1 + \lceil t/2 \rceil$ members of \mathcal{A} is nonempty.

Moreover, $n + 1 + \lceil t/2 \rceil$ cannot be replaced by $n + \lceil t/2 \rceil + 2$.

It is possible to improve Theorem A for strongly convex sets and $t = 2$ by establishing

THEOREM B. Let n be an integer and let \mathcal{A} be a family of $n + 3$ strongly convex sets in S_n. Suppose that every $n + 1$ members of \mathcal{A} have nonempty intersection.

If k is the number of different $n + 2$ membered subfamilies \mathcal{B} of \mathcal{A} such that $\bigcap \mathcal{B} = \emptyset$ then $k < 2$.

Received by the editors October 14, 1976.

AMS (MOS) subject classifications (1970). Primary 52A20, 52A35.

Key words and phrases. Convex sets, n-dimensional unit sphere, Helly type theorems.
The proof of Theorem A is based on
(1) Properties of certain families of convex cones called nondegenerate families (N.D.F.'s), discussed in [4] and [5].
(2) The existence, or the nonexistence of certain k-neighborly polytopes in R^n; see [3].

All the necessary definitions and properties of N.D.F.'s and of neighborly polytopes are stated in §2.

A proof of Theorem A is given in §3.

The proof of Theorem B is similar to the proof of Theorem A and is therefore omitted.

Acknowledgement. The author wishes to express his thanks to Professor Grünbaum for his help and advice.

2. Nondegenerate families and neighborly polytopes. Let \mathcal{C} be a nonempty finite family of convex cones with apex 0 in R^n.

The family \mathcal{C} will be called a nondegenerate family (a N.D.F.) if each member of the family is of dimension n, the intersection of any two members of the family is at least of dimension $(n - 1)$, . . ., the intersection of any n-members is at least of dimension 1 and the intersection of all members is $\{0\}$.

A subset B of \mathcal{C} will be called a face of \mathcal{C} if $\text{int}(\mathcal{C} \setminus B)$ is a subspace.

A subset B of \mathcal{C} is a k-face of \mathcal{C} if it is a face of \mathcal{C} and if $\dim \text{int}(\mathcal{C} \setminus B) = |B| - k$. ($|B|$ means the cardinality of B.)

A relationship between N.D.F.'s and polytopes is given by

THEOREM C. (i) If \mathcal{C} is a N.D.F. in R^n and $|\mathcal{C}| = n + t$ then there exists a $(t - 1)$-polytope P in R^{t-1} such that

(1) The lattice of faces of P and the lattice of faces of \mathcal{C}, both ordered by the inclusion relation, are isomorphic. The isomorphism carries k-faces of P to $(k + 1)$-faces of \mathcal{C}.

(ii) For any $(t - 1)$-polytope P with $n + t$ vertices there exists a N.D.F. \mathcal{C} in R^n with $|\mathcal{C}| = n + t$ such that (1) is satisfied.

A proof of Theorem C is given in [5].

NEIGHBORLY POLYTOPES. A polytope P is k-neighborly if every subset of k vertices of P is the set of vertices of a proper face of P.

Proofs of the following two theorems may be found in Chapter 7 of [3].

THEOREM D. If P is a k-neighborly d-polytope then:
(i) All k vertices of P are affinely independent and P is k' neighborly for $1 < k' < k$.
(ii) if $k > \left[\frac{1}{2} d \right]$ then P is a simplex.

THEOREM E. For every d and $v > d$ there exist d-polytopes with v vertices which are $\left[\frac{1}{2} d \right]$ neighborly.
3. **Proof of Theorem A.** In order to prove Theorem A it is sufficient to prove

Theorem F. Let \(n \) and \(t \) be nonnegative integers. Let \(\mathcal{A} \) be a family of \(n + t \) convex cones with apex \(0 \) in \(\mathbb{R}^n \) such that

\[
\cap \mathcal{A} = \{0\}
\]

and

\[
\cap \mathcal{B} \neq \{0\} \quad \text{for any \(n \) membered subfamily } \mathcal{B} \text{ of } \mathcal{A}.
\]

Then there exists an \(n + [t/2] \) membered subfamily \(\mathcal{C} \) of \(\mathcal{A} \) such that

\[
\cap \mathcal{C} \neq \{0\}.
\]

Moreover, \(n + [t/2] \) in the last statement cannot be replaced by \(n + [t/2] + 1 \).

Proof of Theorem F. The proof is by induction on \(n \). The cases \(n = 0 \) and \(t < 1 \) are trivial, so assume that \(n > 0 \) and that \(t > 2 \).

Let \(\mathcal{A} \) be a family of convex cones with apex \(0 \) on \(\mathbb{R}^n \) such that \(|\mathcal{A}| = n + t \) and assume that (2) and (3) are satisfied.

Suppose that \(A \) is not a N.D.F. Let \(\mathcal{B} \) be a maximal subset of \(\mathcal{A} \) such that

\[
n' = \dim \cap \mathcal{B} < n - |\mathcal{B}|.
\]

Clearly \(\phi \) satisfies (4) since \(\dim \cap \phi = n = n - |\phi| \).

It is not difficult to verify that \(\dim \cap \mathcal{M} = n - |\mathcal{M}| \) and that \(\mathcal{M} \neq \phi \) since \(\mathcal{A} \) is not a N.D.F.

Define a family \(\mathcal{A}' = \{ \cap \mathcal{M} \cap \{A\} : A \in \mathcal{A} \setminus \mathcal{M} \} \) of convex cones with apex \(0 \) in \(\mathbb{R}^n = \text{span} \cap \mathcal{M} \).

Since \(|\mathcal{A}'| = n + t - |\mathcal{M}| = n' + t \) and since \(\mathcal{A}' \) satisfies (2) and (3) we can use the induction hypothesis to obtain a \(\mathcal{C}' \subset \mathcal{A} \setminus \mathcal{M} \) such that \(|\mathcal{C}'| > n' + [t/2] \) and \(\cap \mathcal{C}' \neq \{0\} \).

Define \(\mathcal{C} = \mathcal{C}' \cup \mathcal{M} \). The subfamily \(\mathcal{C} \) has the desired properties since

\[
|\mathcal{C}| = |\mathcal{C}'| + |\mathcal{M}| > n' + [t/2] + |\mathcal{M}| = n + [t/2]
\]

and

\[
\cap \mathcal{C} = \cap \mathcal{C}' \neq \{0\}.
\]

Suppose that \(A \) is a N.D.F. Assume by contradiction that \(\cap \mathcal{B} = \{0\} \) for any \(n + [t/2] \) membered subfamily \(\mathcal{B} \) of \(\mathcal{A} \). Thus for any \(\mathcal{C} \subset \mathcal{A} \) such that

\[
|\mathcal{C}| < n + t - (n + [t/2]) = t - [t/2],
\]

\(\mathcal{C} \) is a \(|\mathcal{C}| \)-face of \(\mathcal{A} \).

Let \(P \) be the \((t - 1)\)-polytope described in Theorem C. It follows from (1) of Theorem C that \(P \) is a \(t - [t/2] \) neighborly polytope with \(n + t \) vertices. Since \(t - [t/2] > [(t - 1)/2] \), \(P \) is by Theorem D a \((t - 1)\)-simplex and therefore \(n + t = (t - 1) + 1 \), so that \(n = 0 \), a contradiction. This completes the proof of the first part of Theorem F.

To complete the proof of Theorem F let \(P \) be a \([(t - 1)/2] \) neighborly \((t - 1)\)-polytope with \(n + t \) vertices (see Theorem E).
Let \mathcal{A} be the N.D.F. described in (ii) of Theorem C. The family satisfies (2) and (3) since any N.D.F. in \mathbb{R}^n satisfies (2) and also (3) if $n > 0$.

For any $\mathcal{B} \subset \mathcal{A}$ such that $\mathcal{B} \geq n + \lceil t/2 \rceil + 1$ we have that

$$|\mathcal{A} \setminus \mathcal{B}| < t - \lceil t/2 \rceil - 1 < \lceil (t - 1)/2 \rceil.$$

By Theorem C(i), for any such \mathcal{B}, $\mathcal{A} \setminus \mathcal{B}$ is a $|\mathcal{A} \setminus \mathcal{B}|$-face of \mathcal{A}.

Therefore $\dim \mathcal{A} \cap \mathcal{B} = \dim \mathcal{A} \setminus (\mathcal{A} \setminus (\mathcal{A} \setminus \mathcal{B})) = |\mathcal{A} \setminus \mathcal{B}| - |\mathcal{A} \setminus \mathcal{B}| = 0$ so that $\mathcal{A} \cap \mathcal{B} = \{0\}$. The proof of Theorem F is now complete.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA T6G 2G1, CANADA