The index of a holomorphic mapping and the index theorem
HTML articles powered by AMS MathViewer
- by Tôru Ishihara
- Proc. Amer. Math. Soc. 66 (1977), 169-174
- DOI: https://doi.org/10.1090/S0002-9939-1977-0494249-7
- PDF | Request permission
Abstract:
The index theorem for a harmonic mapping of riemannian manifolds is given. Let $f:M \to N$ be a holomorphic mapping of Kaehler manifolds. Then it is shown that the index of f is zero and that a Jacobi field along f is a holomorphic section of the bundle ${f^ \ast }T(N)$ induced by f.References
- Samuel I. Goldberg and Toru Ishihara, Harmonic quasiconformal mappings of Riemannian manifolds, Bull. Amer. Math. Soc. 80 (1974), 562–566. MR 341335, DOI 10.1090/S0002-9904-1974-13499-3
- S. I. Goldberg, T. Ishihara, and N. C. Petridis, Mappings of bounded dilatation of Riemannian manifolds, J. Differential Geometry 10 (1975), no. 4, 619–630. MR 390964
- André Lichnerowicz, Applications harmoniques et variétés Kähleriennes, Rend. Sem. Mat. Fis. Milano 39 (1969), 186–195 (French, with English summary). MR 270305, DOI 10.1007/BF02924136
- E. Mazet, La formule de la variation seconde de l’énergie au voisinage d’une application harmonique, J. Differential Geometry 8 (1973), 279–296 (French). MR 336767
- James Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105. MR 233295, DOI 10.2307/1970556
- S. Smale, On the Morse index theorem, J. Math. Mech. 14 (1965), 1049–1055. MR 0182027, DOI 10.1111/j.1467-9876.1965.tb00656.x
- R. T. Smith, The second variation formula for harmonic mappings, Proc. Amer. Math. Soc. 47 (1975), 229–236. MR 375386, DOI 10.1090/S0002-9939-1975-0375386-2
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 66 (1977), 169-174
- MSC: Primary 58E15; Secondary 53C20
- DOI: https://doi.org/10.1090/S0002-9939-1977-0494249-7
- MathSciNet review: 0494249