Finite simple groups containing a self-centralizing element of order $6$
HTML articles powered by AMS MathViewer
- by John L. Hayden and David L. Winter
- Proc. Amer. Math. Soc. 66 (1977), 202-204
- DOI: https://doi.org/10.1090/S0002-9939-1977-0450393-1
- PDF | Request permission
Abstract:
By a self-centralizing element of a group we mean an element which commutes only with its powers. In this paper we establish the following result: Theorem. Let G be a finite simple group which has a self-centralizing element of order 6. Assume that G has only one class of involutions. Then G is isomorphic to one of the groups ${M_{11}},{J_1},{L_3}(3),{L_2}(11),{L_2}(13)$.References
- Michael Aschbacher, Thin finite simple groups, Bull. Amer. Math. Soc. 82 (1976), no. 3, 484. MR 396735, DOI 10.1090/S0002-9904-1976-14063-3
- Walter Feit and John G. Thompson, Finite groups which contain a self-centralizing subgroup of order 3, Nagoya Math. J. 21 (1962), 185–197. MR 142623
- D. Gorenstein, Centralizers of involutions in finite simple groups, Finite simple groups (Proc. Instructional Conf., Oxford, 1969) Academic Press, London, 1971, pp. 65–133. MR 0335622
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- Daniel Gorenstein and Koichiro Harada, Finite groups whose $2$-subgroups are generated by at most $4$ elements, Memoirs of the American Mathematical Society, No. 147, American Mathematical Society, Providence, R.I., 1974. MR 0367048 G. Higman, Odd characterizations of finite simple groups, (Lecture notes, University of Michigan, 1968).
- Zvonimir Janko, A new finite simple group with abelian Sylow $2$-subgroups and its characterization, J. Algebra 3 (1966), 147–186. MR 193138, DOI 10.1016/0021-8693(66)90010-X
- Zvonimir Janko, A class of simple groups of characteristic $2$, Finite groups ’72 (Proc. Gainesville Conf., Univ. Florida, Gainesville, Fla., 1972) North-Holland Math. Studies, Vol. 7, North-Holland, Amsterdam, 1973, pp. 98–100. MR 0360800
- Zvonimir Janko and John G. Thompson, On a class of finite simple groups of Ree, J. Algebra 4 (1966), 274–292. MR 201504, DOI 10.1016/0021-8693(66)90041-X
- Lary Schiefelbusch, Sylow $2$-subgroups of simple groups, J. Algebra 31 (1974), 131–153. MR 357599, DOI 10.1016/0021-8693(74)90010-6 I. Schur, Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. für die r. und a Math. 132 (1907), 85-137.
- Michio Suzuki, On finite groups containing an element of order four which commutes only with its powers, Illinois J. Math. 3 (1959), 255–271. MR 104733
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 66 (1977), 202-204
- MSC: Primary 20D05
- DOI: https://doi.org/10.1090/S0002-9939-1977-0450393-1
- MathSciNet review: 0450393