Locally free actions and Stiefel-Whitney numbers. II
HTML articles powered by AMS MathViewer
- by R. E. Stong and H. E. Winkelnkemper
- Proc. Amer. Math. Soc. 66 (1977), 367-371
- DOI: https://doi.org/10.1090/S0002-9939-1977-0454994-6
- PDF | Request permission
Abstract:
This paper determines the possible bordism classes of manifolds with a locally free G action for G one of ${S^1} \times {S^1},{({S^1})^4}$ or ${S^3}$ and gets partial information for ${({S^1})^3}$.References
- Paul S. Mostert, On a compact Lie group acting on a manifold, Ann. of Math. (2) 65 (1957), 447–455. MR 85460, DOI 10.2307/1970056
- R. E. Stong, On fibering of cobordism classes, Trans. Amer. Math. Soc. 178 (1973), 431–447. MR 315733, DOI 10.1090/S0002-9947-1973-0315733-3
- R. E. Stong, Subbundles of the tangent bundle, Trans. Amer. Math. Soc. 200 (1974), 185–197. MR 356102, DOI 10.1090/S0002-9947-1974-0356102-0
- H. E. Winkelnkemper, Locally free actions and Stiefel-Whitney numbers, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 1, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R.I., 1975, pp. 323–330. MR 0375353
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 66 (1977), 367-371
- MSC: Primary 57D85; Secondary 57E99
- DOI: https://doi.org/10.1090/S0002-9939-1977-0454994-6
- MathSciNet review: 0454994