Weakly closed $m$-accretive operators
HTML articles powered by AMS MathViewer
- by A. Yamamoto and N. Okazawa
- Proc. Amer. Math. Soc. 66 (1977), 284-288
- DOI: https://doi.org/10.1090/S0002-9939-1977-0467409-9
- PDF | Request permission
Abstract:
Let A and B be weakly closed, nonlinear m-accretive (single-valued) operators in a reflexive Banach space X, and ${B_n}$ be the Yosida approximation of B. Then the following condition is sufficient for the sum $A + B$ to be also m-accretive: For each $v \in X,\left \| {{B_n}{u_n}} \right \|$ is bounded as n tends to infinity, where ${u_n}$ is defined by the equation ${u_n} + A{u_n} + {B_n}{u_n} = v,n = 1,2, \ldots$. Some related conditions are also provided.References
- H. Brezis, M. G. Crandall, and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space, Comm. Pure Appl. Math. 23 (1970), 123โ144. MR 257805, DOI 10.1002/cpa.3160230107
- V. Barbu, Weak solutions for nonlinear functional equations in Banach spaces, Ann. Mat. Pura Appl. (4) 87 (1970), 87โ110. MR 298484, DOI 10.1007/BF02411973
- Paul R. Chernoff, Perturbations of dissipative operators with relative bound one, Proc. Amer. Math. Soc. 33 (1972), 72โ74. MR 296745, DOI 10.1090/S0002-9939-1972-0296745-X
- W. E. Fitzgibbon, Nonlinear perturbation of $m$-accretive operators, Proc. Amer. Math. Soc. 44 (1974), 359โ364. MR 343112, DOI 10.1090/S0002-9939-1974-0343112-8
- Tosio Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508โ520. MR 226230, DOI 10.2969/jmsj/01940508
- Tosio Kato, Accretive operators and nonlinear evolution equations in Banach spaces. , Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp.ย 138โ161. MR 0271782
- Yoshio Konishi, A remark on perturbation of $m$-accretive operators in Banach space, Proc. Japan Acad. 47 (1971), 452โ455. MR 318994
- Isao Miyadera, Some remarks on semi-groups of nonlinear operators, Tohoku Math. J. (2) 23 (1971), 245โ258. MR 296746, DOI 10.2748/tmj/1178242643
- Noboru Okazawa, A perturbation theorem for linear contraction semigroups on reflexive Banach spaces, Proc. Japan Acad. 47 (1971), no.ย suppl, suppl. II, 947โ949. MR 313877, DOI 10.2183/pjab1945.47.SupplementII_{9}47
- Noboru Okazawa, Perturbations of linear $m$-accretive operations, Proc. Amer. Math. Soc. 37 (1973), 169โ174. MR 313850, DOI 10.1090/S0002-9939-1973-0313850-0
- Kรดsaku Yosida, Functional analysis, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag New York, Inc., New York, 1968. MR 0239384, DOI 10.1007/978-3-662-11791-0
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 66 (1977), 284-288
- MSC: Primary 47H05; Secondary 47H15
- DOI: https://doi.org/10.1090/S0002-9939-1977-0467409-9
- MathSciNet review: 0467409