ON THE NORMABILITY OF THE INTERSECTION OF L_p SPACES

WAYNE C. BELL

Abstract. The set $L_\omega = \bigcap_{p=1}^{\infty} L_p[0, 1]$ is not equal to $L_\infty[0, 1]$ since L_ω contains the function $-\ln x$. Using the theory of L_p spaces for finitely additive set functions developed by Leader [9] we will prove several necessary and sufficient conditions for the normability of a generalization of L_ω. These include the equality and finite dimensionality of all the L_p spaces, $p > 1$.

1. Introduction. The set $L_\omega = \bigcap_{p=1}^{\infty} L_p[0, 1]$ is not equal to $L_\infty[0, 1]$ since L_ω contains the function $-\ln x$. In [2] Arens showed that with the natural ω-topology, i.e. the smallest topology which contains each relative p-norm topology, L_ω is not normable. In [5] and [6] Davis, Murray and Weber discussed $L_p(\mu) = \bigcap_{q>p} L_q(\mu)$ which, when $p = \infty$ and μ is Lebesgue measure on $[0, 1]$, reduces to L_ω. Using the theory of L_p spaces for finitely additive set functions developed by Leader [9], we will prove several necessary and sufficient conditions for the normability of a generalization of L_ω. These include the equality and finite dimensionality of all the L_p spaces, $p > 1$.

Suppose S is a set, F a field of subsets of S and $ba(F)$ the set of bounded finitely additive functions from F into the real numbers. If $G \in ba(F)$, then G^+ will denote the nonnegative valued elements of G. A_λ will be the set of elements of $ba(F)$ which are absolutely continuous with respect to $\lambda \in ba(F)^+$. It should be noted that we mean absolutely continuous in the $\epsilon-\delta$ sense which is (for $ba(F)$) stronger than the 0-0 sense. Henceforth, μ will be in $ba(F)^+$ with $\mu(S) = 1$. We adopt the convention that $a/0$ is 0.

2. "L_p spaces" for μ and $H_\omega(\mu)$. For $1 < p < \infty$ we define $H_p(\mu)$ to be the set to which ξ belongs iff

(1) $\xi \in A_\mu$ and

(2) there exists an $M > 0$ such that $\sum_D |\xi(I)|^p \mu(I)^{1-p} < M$ for each (finite) subdivision D of S by elements of F.

If $p > 1$, then (1) may be replaced by: $\mu(I) = 0$ implies $|\xi(I)| = 0$. If $p = 2$
we have the Hilbert space of Hellinger integrable functions which, when F is a σ-field and μ is countably additive, corresponds to $L_2(\mu)$. The p-norm $(1 < p < \infty)$ denoted $\| \cdot \|_p$, is the pth root of the supremum of the sums in (2). $H_\infty(\mu)$ will be $\{ \xi \in A_\mu : |\xi(I)| \mu(I)^{-1} \text{ is bounded on } F \}$ (the Lip(\mu) of [4]) with $\| \xi \|_\infty = \sup(|\xi(I)| \mu(I)^{-1}) I \in F)$. With this norm $H_p(\mu) (1 < p < \infty)$ is a Banach space [9]. If $p = 1$, then $H_p(\mu)$ is A_μ with the total variation norm.

For ξ, η and δ in $ba(F)$ we will denote by $\eta \wedge \delta$ the element of $ba(F)$ whose value at $v \in F$ is $\sup\{ g(v) | g \in ba(F), g \leq \eta \text{ and } g \leq \delta \}$, $\eta \vee \delta$ will be $-[(\eta) \wedge (-\delta)]$ and $\xi \vee 0$ will be written ξ^+, so that the total variation function for ξ will be $|\xi| = \xi^+ + \xi^-$, where $\xi^-=(-\xi)^+$.

In the interest of self-containment we state some of the results from [9] which we will need.

Theorem 2. L. Suppose each of η and δ is in A_μ, $\lambda \in A_\mu^+$ and $1 < q < p < \infty$. Then we have:

I. If $|\delta| < |\eta|$, then $\eta \in H_p(\mu)$ iff $|\eta| \in H_p(\mu)$, in which case $\delta \in H_p(\mu)$ and $\|\delta\|_p < \|\eta\|_p = ||\eta||_p$.

II. The sequence $(\lambda \wedge K\mu)_{K=1}^\infty$ is p-norm convergent to λ if $\lambda \in H_p(\mu)$ and, therefore, $H_\infty(\mu)$ is p-norm dense in $H_p(\mu)$.

III. The strength of the p-norms is nondecreasing with p and therefore $H_\infty(\mu) \subseteq H_p(\mu) \subseteq H_q(\mu) \subseteq A_\mu$.

Suppose $\lambda \in A_\mu^+, 1 < p < \infty$, D is a subdivision of S and N is the number of elements in D. Then there exists a $K \in \mathbb{N} = \{1, 2, \ldots \}$ such that $\lambda(v)^p < (\lambda \wedge K\mu)(v)^p + \mu(v)^{p-1}N^{-1}$ for each $v \in D$. Therefore

$$\sum_D \lambda(v)^p \mu(v)^{1-p} < \sum_D [(\lambda \wedge K\mu)(v)^p + \mu(v)^{p-1}N^{-1}] \mu(v)^{1-p}$$

$$< \|\lambda \wedge K\mu\|_P^p + 1,$$

and we have

Lemma 2.1. If $\lambda \in A_\mu^+$ and $1 < p < \infty$, then $\lambda \in H_p(\mu)$ iff $\{\|\lambda \wedge K\mu\|_P | K = 1, 2, \ldots \}$ is bounded.

We will denote by $H_\omega(\mu)$ the intersection of $H_p(\mu)$ for $1 < p < \infty$. The ω-topology will be the smallest topology on $H_\omega(\mu)$ which contains each relative p-norm topology.

Lemma 2.2. If $(a_p)_{p=1}^\infty$ is a sequence of positive numbers such that $\sum_{p=1}^\infty a_p \|\xi\|_p$ exists for each ξ in $H_\omega(\mu)$, then the norm defined by $\|\xi\| = \sum_{p=1}^\infty a_p \|\xi\|_p$ is complete.

Proof. Let (ξ_n) be a $\| \cdot \|$ Cauchy sequence in $H_\omega(\mu)$. Then by 2.L.II we have

$$\| |\xi_n| - |\xi_m| \| = || |\xi_n| - |\xi_m| | \| \leq || |\xi_n - \xi_m| \| = \| \xi_n - \xi_m \|$$

so that $(|\xi_n|)$ is also $\| \cdot \|$ Cauchy. Let $(\delta_n) = (|\xi_n|)$ be a subsequence of $(|\xi_n|)$
such that if i and r are positive integers then $\|\delta_i - \delta_{i+r}\| < 1/2^r$. Let $\eta_1 = \delta_1$ and for each $1 < i \in \mathbb{N}$ let $\eta_i = \delta_i \vee \eta_{i-1}$. Then

$0 < \eta_{i+1} - \eta_i = (\delta_{i+1} - \eta_i)^+ < (\delta_{i+1} - \delta_i)^+ < |\delta_{i+1} - \delta_i|$, so that again by 2.L.II, $\|\eta_{i+1} - \eta_i\| < \|\delta_{i+1} - \delta_i\| < 1/2^r$. Now for each i, $r \in \mathbb{N}$ we have

$$\|\eta_{i+r} - \eta_i\| < \sum_{j=1}^{r} \|\eta_{i+j} - \eta_{i+j-1}\| < \sum_{j=1}^{r} \frac{1}{2^j} < \frac{1}{2^{r-1}}$$

and, therefore, (η_i) is $\|\cdot\|$ Cauchy and $\eta_i < \eta_{i+1}$ for each $i \in \mathbb{N}$.

Now any norm Cauchy sequence is p-norm Cauchy for each $1 < p < \infty$ and, hence, has a p-norm limit which (by the comparability of p-norms) is independent of p. Therefore there exists ξ and η in $H^p(\mu)$ such that $\eta_i \to^p \eta$ and $\xi_i \to^p \xi$ for each $1 < p < \infty$.

Now let $c > 0$ and $K \in \mathbb{N}$ be such that $\sum_{K+1}^\infty a_p\|\eta\|_p < c/4$ and $\sum_{K+1}^\infty a_p\|\xi\|_p < c/4$. For each $p < K$ let N_p be such that if $i > N_p$, then $a_p\|\xi - \xi_n\|_p < c/2K$. Let $N = \max\{N_1, N_2, \ldots, N_K\}$ and $i > N$. Then

$$\|\xi - \xi_n\| = \sum_{p=1}^\infty a_p\|\xi - \xi_n\|_p
= \sum_{p=1}^K a_p\|\xi - \xi_n\|_p + \sum_{K+1}^\infty a_p\|\xi - \xi_n\|_p
\leq \sum_{p=1}^K \frac{c}{2K} + \sum_{K+1}^\infty a_p(\|\xi\|_p + \|\xi_n\|_p)
\leq \frac{c}{2} + \frac{c}{4} + \sum_{K+1}^\infty a_p\|\delta_i\|_p
\leq \frac{3c}{4} + \sum_{K+1}^\infty a_p\|\eta_i\|_p
\leq \frac{3c}{4} + \sum_{K+1}^\infty a_p\|\eta\|_p < c.$$

Therefore, $\xi_n \to^{\|\cdot\|} \xi$ and, hence, $\xi_n \to^{\|\cdot\|} \xi$, so that $\|\cdot\|$ is complete.

3. A differential equivalence theorem for Hellinger integrals. In this section we will show that $H_{2^k}(\mu)$ is the “Kth image” of a certain function. The integral considered below is the refinement limit of sums over finite subdivisions of S by elements of F. For further details see [1].

Theorem 3.H. If $\xi \in ba(F)$, then $\xi \in A^+_\mu$ iff there exists an $\eta \in H_2(\mu)$ such that $\xi = \int \eta^2/\mu$.

The proof of this theorem of Hellinger [8] (for interval functions) carries over to our setting and suggests the function

$$T: H^+_2(\mu) \to A^+_\mu: \eta \to \int \eta^2/\mu.$$
The η of Theorem 3.H is given by the function $R(\xi) = f(\xi, \mu)^{1/2}$ which has
the following properties [3]. R is defined on all of $ba(F)^+$ and its restriction
to A_μ^+ is the inverse of T. If $\xi \in ba(F)^+$, then $R(\xi) \in H_2^+(\mu)$ and $T(R(\xi)) = a_\mu(\xi)$ (the absolutely continuous part of ξ).

Lemma 3.1. Suppose $\alpha: F \to \mathbb{R}^+$, $\mu(I) = 0$ implies $\alpha(I) = 0$ for each $I \in F$, $\Sigma_p \alpha(I)$ is nondecreasing for successive refinements and $\int \alpha(I)$ exists. Then $\int \alpha^2/\mu$ exists iff $\int (\alpha)^2/\mu$ exists, in which case they are equal.

Proof. If $\int (\alpha)^2/\mu$ exists, then, since $\Sigma_p \alpha^2(I)/\mu(I)$ is nondecreasing for successive refinements and bounded by $\int (\alpha(I))^2/\mu(v)$, we have $\int \alpha^2/\mu$ exists.

If $\int \alpha^2/\mu$ exists, then

$$\int \alpha = \left(\mu \int \alpha^2/\mu \right)^{1/2} = \left(\mu \int \alpha^2/\mu \right)^{1/2}$$

(see [1])

$$= R \left(\int \alpha^2/\mu \right) \in H_2(\mu),$$

i.e. $\int (\alpha)^2/\mu$ exists.

If both exist, then

$$\int \alpha^2/\mu \leq \int \left(\int \alpha \right)^2/\mu = T(\int \alpha) = T \left(R \left(\int \alpha^2/\mu \right) \right) = a_\mu \left(\int \alpha^2/\mu \right) \leq \int \alpha^2/\mu.$$

For $\xi \in ba(F)$ and $p > 1$ we have $\Sigma_p \|\xi(I)\|^p \mu(I) \leq p$ is nondecreasing for successive refinements [9] so that, for $\xi \in A_\mu^+$, $\xi \in H_p(\mu)$ iff $\int \|\xi\|^p \mu^{1-p}$ exists. Therefore by 3.1 and induction we have, for $\xi \in A_\mu^+$, $T^K(\xi)$ exists iff $\xi \in H^p(\mu)$. Hence $R^K(A_\mu^+) = H^p(\mu)$.

4. The normability of $H^\omega(\mu)$. In the countably additive case the equivalence of (2) and (3) below can be found in [5].

Theorem 4.1. These are equivalent:

1. The ω-topology is contained in a norm topology.
2. The ω-topology is normable.
3. There exists a $p (1 < p < \infty)$ such that $H_p(\mu) = H^\omega(\mu)$.
4. $A_\mu = H_2(\mu)$.
5. $A_\mu = H_\infty(\mu)$.
6. A_μ is finite dimensional.

(1) \to (2). Suppose $\| \cdot \|$ is a norm on $H^\omega(\mu)$ and its topology contains the ω-topology. Then for each $p \in \mathbb{N}$ there exists an $M_p > 0$ such that $\|\xi\|_p < M_p \|\xi\|$ for each $\xi \in H^\omega(\mu)$ and, therefore, $\| \cdot \| = \sum_{p=1}^\infty \| \cdot \|_p 2^{-p} M_p^{-1}$ is a complete norm by Lemma 2.2. The ω-topology, being defined by a countable collection of norms, is a complete linear metric topology which is contained in the $\| \cdot \|$ topology and, hence, equal to it by the open mapping theorem [7].

(2) \to (3). Suppose the ω-topology is normable, then there exists a neighborhood U of 0 which is ω-bounded in the following sense: if $(\eta_n) \subseteq U$ and
(\alpha_n) is a null sequence, then (\alpha_n \eta_n \to \omega 0). Since the \omega-topology is generated by the p-norms, \rho \in N, there exists a p > 1 such that if B = \{ \eta \in H, (\mu) \mid \|\eta\|_p < 1\}, then B \cap H, (\mu) is \omega-bounded. Now let \xi \in B^+, r > p and \\
\xi_k = \xi / K\mu for each K \in N. Then \|\xi_k\|_r is bounded, since otherwise we would have \((1/\|\xi_k\|_r)\|^{1/2} \to 0\) and, therefore, \((1/\|\xi_k\|_r)^{1/2} \xi_k \omega 0\), hence \((1/\|\xi_k\|_r)^{1/2} \xi_k \to 0\), which is a contradiction. Therefore, by Lemma 2.1, \xi \in H, (\mu) and, hence, H, (\mu) = H, (\mu).

(3) \to (4). Suppose p > 1 and H, (\mu) = H, (\mu). By 2.L. it is sufficient to consider A, +. Let K \in N be such that p < 2K, then by \S3 we have

\[A^+_\mu = T^K(R^K(A^+_\mu)) = T^K(H^+_2(\mu)) = T^K(H^+_2(\mu)) \]

We will need the following to prove that (4) implies (5).

Theorem 4.B. If each of \lambda and \mu is in ba(F)*, then \lambda \in H_\infty (\mu) iff H^+_2(\lambda) \subseteq H_2(\mu).

Proof. [4].

(4) \to (5). Suppose H_2(\mu) = A_\mu and \lambda \in A^+_\mu. Then H_2(\lambda) \subseteq A_\lambda \subseteq A_\mu = H_2(\mu) and, therefore, by 4.B, \lambda \in H_\infty (\mu).

(5) \to (6). Suppose A_\mu is not finite dimensional; then there exists a disjoint sequence, (v_n), on which \mu is positive. Let (a_n) be an unbounded sequence of positive numbers such that \sum_{n=1}^\infty a_n \mu(v_n) < \infty. Then \sum_{n=1}^\infty a_n \mu_n is in A_\mu but not H_\infty (\mu), where \mu_n is the contraction of \mu to v_n, i.e. \mu_n(I) = \mu(I \cap v_n) for each I \in F.

(6) \to (1). This follows from the fact that \| \cdot \|_\infty is stronger than each relative p-norm.

We conclude by noting that as a consequence of the equivalence of (1), (2) and (5) we have the following “internal” characterization of the normability of H, (\mu).

Corollary 4.1. The \omega-topology is normable iff H, (\mu) = H_\infty (\mu).

Added in proof. For countably additive \mu on a \sigma-field the property H, (\mu) = H_\infty (\mu), 4.1.5, 4.1.6 and several other conditions have been considered by Professor Ion Chitescu in Finitely purely atomic measures and L^p-spaces, Anal. Univ. București Sti. Natur. 24 (1975), 23–29, MR 52 #8366.

Bibliography

Department of Mathematics, Murray State University, Murray, Kentucky 42071