On the support of symmetric infinitely divisible and stable probability measures on LCTVS
HTML articles powered by AMS MathViewer
- by Balram S. Rajput
- Proc. Amer. Math. Soc. 66 (1977), 331-334
- DOI: https://doi.org/10.1090/S0002-9939-1977-0494351-X
- PDF | Request permission
Abstract:
It is shown that the topological support (supp.) of a $\tau$-regular, symmetric, infinitely divisible (resp. stable of any index $\alpha \in (0,2)$) probability measure on a Hausdorff LCTVS E is a subgroup (resp. a subspace) of E. The part regarding the support of a stable probability measure of this theorem completes a result of A. De-Acosta [Ann. of Probability 3 (1975), 865-875], who proved a similar result for $\alpha \in (1,2)$, and the author [Proc. Amer. Math. Soc. 63 (1977), 306-312], who proved it for $\alpha \in [1,2)$. Further, it provides a complete affirmative solution to the question, raised by J. Kuelbs and V. Mandrekar [Studia Math. 50 (1974), 149-162], of whether the supp. of a symmetric stable probability measure of index $\alpha \in (0,1]$ on a separable Hilbert space H is a subspace of H.References
- I. Csiszár, Some problems concerning measures on topological spaces and convolutions of measures on topological groups, Les probabilités sur les structures algébriques (Actes Colloq. Internat. CNRS, No. 186, Clermont-Ferrand, 1969) Éditions Centre Nat. Recherche Sci., Paris, 1970, pp. 75–96 (English, with French summary). MR 0420768 —, On the $wea{k^\ast }$ convergence of convolution in a convolution algebra over an arbitrary group, Studia Sci. Math. Hungar. 6 (1971), 27-40.
- I. Csiszár and Balram S. Rajput, A convergence of types theorem for probability measures on topological vector spaces with applications to stable laws, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), no. 1, 1–7. MR 420761, DOI 10.1007/BF00533204
- Alejandro de Acosta, Stable measures and seminorms, Ann. Probability 3 (1975), no. 5, 865–875. MR 391202, DOI 10.1214/aop/1176996273
- J. Kuelbs and V. Mandrekar, Domains of attraction of stable measures on a Hilbert space, Studia Math. 50 (1974), 149–162. MR 345155, DOI 10.4064/sm-50-2-149-162
- Balram S. Rajput, On the support of certain symmetric stable probability measures on $\textrm {TVS}$, Proc. Amer. Math. Soc. 63 (1977), no. 2, 306–312. MR 445594, DOI 10.1090/S0002-9939-1977-0445594-2
- Balram S. Rajput and N. N. Vakhania, On the support of Gaussian probability measures on locally convex topological vector spaces, Multivariate analysis, IV (Proc. Fourth Internat. Sympos., Dayton, Ohio, 1975) North-Holland, Amsterdam, 1977, pp. 297–309. MR 0458520
- Helmut H. Schaefer, Topological vector spaces, Graduate Texts in Mathematics, Vol. 3, Springer-Verlag, New York-Berlin, 1971. Third printing corrected. MR 0342978
- A. Tortrat, Structure des lois indéfiniment divisibles $(\mu \,\in \,{\cal I}={\cal I}(X))$ dans un espace vectoriel topologique (séparé) $X$, Symposium on Probability Methods in Analysis (Loutraki, 1966) Springer, Berlin, 1967, pp. 299–328 (French). MR 0226692
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 66 (1977), 331-334
- MSC: Primary 60B05
- DOI: https://doi.org/10.1090/S0002-9939-1977-0494351-X
- MathSciNet review: 0494351