Modules and quadratic forms over polynomial algebras
HTML articles powered by AMS MathViewer
- by M.-A. Knus and M. Ojanguren PDF
- Proc. Amer. Math. Soc. 66 (1977), 223-226 Request permission
Abstract:
Let D be a finite dimensional division algebra over a field k. Projective $D[x,y]$-modules of rank $\geqslant 2$ are free. Projective ideals of $D[x,y]$, D a quaternionic division algebra, which are not free, are used to construct regular quadratic $k[x,y]$-modules which are not extended from k.References
- Germán Ancochea, On semi-automorphisms of division algebras, Ann. of Math. (2) 48 (1947), 147–153. MR 18642, DOI 10.2307/1969221
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491 A. Grothendieck, Le groupe de Brauer. I, Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968.
- N. Jacobson, Some groups of transformations defined by Jordan algebras. I, J. Reine Angew. Math. 201 (1959), 178–195. MR 106936, DOI 10.1515/crll.1959.201.178
- Manfred Knebusch, Grothendieck- und Wittringe von nichtausgearteten symmetrischen Bilinearformen, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. 1969/70 (1969/1970), 93–157 (German). MR 0271118
- Max-Albert Knus and Manuel Ojanguren, Théorie de la descente et algèbres d’Azumaya, Lecture Notes in Mathematics, Vol. 389, Springer-Verlag, Berlin-New York, 1974 (French). MR 0417149
- T. Y. Lam, The algebraic theory of quadratic forms, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1973. MR 0396410
- M. Ojanguren and R. Sridharan, Cancellation of Azumaya algebras, J. Algebra 18 (1971), 501–505. MR 276271, DOI 10.1016/0021-8693(71)90133-5
- S. Parimala, Failure of a quadratic analogue of Serre’s conjecture, Bull. Amer. Math. Soc. 82 (1976), no. 6, 962–964. MR 419427, DOI 10.1090/S0002-9904-1976-14234-6
- Daniel Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167–171. MR 427303, DOI 10.1007/BF01390008
- M. S. Raghunathan, Principal bundles on affine space, C. P. Ramanujam—a tribute, Tata Inst. Fund. Res. Studies in Math., vol. 8, Springer, Berlin-New York, 1978, pp. 187–206. MR 541022
Additional Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 66 (1977), 223-226
- MSC: Primary 13F20; Secondary 15A63
- DOI: https://doi.org/10.1090/S0002-9939-1977-0498534-4
- MathSciNet review: 0498534