THE COMPLETION OF PRÜFER DOMAINS

JIRÍ MOČKOŘ

Abstract. The completion of Prüfer and almost Dedekind domains in topologies \(\sup \{ \mathcal{T}_w : w \in \Omega \} \), where \(\mathcal{T}_w \) is a topology induced by a valuation \(w \in \Omega \), are characterized in terms of Manis valuations.

1. Let \(A \) be an integral domain with the quotient field \(K \) and let \(\Omega \) be the family of nontrivial valuations on \(K \) which are nonnegative on \(A \). It is well known that a valuation \(w \in \Omega \) with the value group \(G_w \) defines a field topology \(\mathcal{T}_w \) in \(K \) with the sets \(U_{w,\alpha} = \{ x \in K : w(x) > \alpha \} \), \(\alpha \in G_w^+ = \{ \beta \in G_w : \beta > 0 \} \), as a base of the neighbourhoods of zero in \(K \). Since \(\mathcal{T}_w \) is a minimal topology in the ordered set of all field topologies on \(K \), the completion \(\hat{K}_w \) of \(K \) is a field and the extension \(\hat{w} \) of \(w \) on \(\hat{K}_w \) is a valuation on \(\hat{K}_w \).

In this note we consider a more general situation. Let \(\mathcal{T} \) be the supremum of the family of topologies \(\{ \mathcal{T}_w : w \in \Omega \} \). In general, the family \(\Omega \) contains nonequivalent valuations, and, in this case, the completion \(\hat{K} \) of \(K \) in \(\mathcal{T} \) may contain zero divisors. Hence, it seems natural to use for the investigation of the ideal-theoretic properties of the completion \(\hat{A} \) of a domain \(A \) in a topology \(\mathcal{T} \) the valuation theory on rings with zero divisors which was introduced by M. E. Manis [8]. Especially if \(A \) is a Prüfer domain or almost Dedekind domain, we determine to what extent these properties hold for \(\hat{A} \).

In this paper all rings and groups are assumed to be commutative. At first, we recall some results of Manis [8] and M. Griffin [4]. A valuation on a ring \(R \) is a map \(w \) from \(R \) onto a totally ordered group \(G \) and a symbol \(\infty \), such that for all \(a, b \in R \),

(i) \(w(ab) = w(a) + w(b) \),
(ii) \(w(a + b) \geq \min\{w(a), w(b)\} \).

Note that in (ii) equality holds if \(w(a) \not= w(b) \). The valuation ring \(R_w \) of \(w \) is defined to be the subring of \(R \) of all elements with nonnegative value. The set \(M(w) \) of all elements of \(R \) with positive value is a prime ideal of \(R_w \) and \((R_w, M(w)) \) is said to be a valuation pair associated with \(w \). An ideal \(Q \) of a valuation ring \(R_w \) is \(w \)-closed if \(x \in Q, y \in R_w \) and \(w(x) \leq w(y) \) imply \(y \in Q \). M. Griffin [4] defines the large quotient ring of a ring \(R \) with respect to a multiplicative system \(S \) of \(R \) as \(R_{[S]} = \{ x \in K : xs \in R \text{ for some } s \in S \} \), where \(K \) is the total quotient ring of \(R \). If \(P \) is a prime ideal of \(R \) with
$S = R - P, R_{[P]}$ will be used for $R_{[S]}$. Also $[P]R_{[P]}$ denotes the prime ideal of $R_{[P]}$ defined by $\{x \in K : xs \in P$ for some $s \in R - P\}$. Then a Prüfer ring is a ring in which every finitely generated regular ideal is invertible. By [4, Theorem 13], R is a Prüfer ring if and only if for every maximal regular ideal Q of $R, (R_{[Q]}, [Q]R_{[Q]})$ is a valuation pair associated with some valuation on K.

M. D. Larsen [7] introduced the notion of an N-ring which generalizes almost Dedekind domain, where an almost Dedekind domain is an integral domain A such that for all prime ideals P of A, A_p is a discrete rank one valuation ring. He defines an N-ring to be a ring R in which for all maximal regular prime ideals Q of $R, (R_{[Q]}, [Q]R_{[Q]})$ is a valuation pair associated with a valuation w such that G_w is isomorphic to the group Z of integers.

The author is grateful to the referee, especially for his suggestions concerning h-local Prüfer domains.

2. We begin this section with some results about the topology induced by a Manis valuation. Let $(R_w, M(w))$ be a valuation pair and let K be the total quotient ring of R_w. Then the sets

$$U_{w, \alpha} = \{x \in K : w(x) > \alpha\}, \quad \alpha \in G_w^+,$$

form a base of the neighbourhoods of zero in K for some ring topology $\overline{\tau}_w$ in K. For, $U_{w, \alpha}$ is an additive subgroup of K, $U_{w, \alpha} \cdot U_{w, \beta} \subseteq U_{w, \alpha}$, and for any $x_0 \in K, \alpha \in G_w^+$, we have $x_0 U_{w, \beta} \subseteq U_{w, \alpha}$, where $\beta \geq \alpha - w(x_0)$ if $x_0 \notin w^{-1}(\infty)$ and $\beta \in G_w^+$ for $x_0 \in w^{-1}(\infty)$. Now, if we define on the set $G_w' = G_w \cup \{\infty\}$ a topology by setting $X = X \cup \{\infty\}$ for every $X \subseteq G_w', X \neq \emptyset, \emptyset$, then G_w' is a complete uniform space and $w : (K, \overline{\tau}_w) \to G_w'$ is continuous.

Lemma 1. Let R_w be a valuation ring with J an ideal of R_w. If J is w-closed and $J \neq w^{-1}(\infty)$, it is clopen in R_w. If J is closed, then $w^{-1}(\infty) \subseteq J$.

Proof. Let J be w-closed Since $J \neq w^{-1}(\infty)$, there exists $a \in J - w^{-1}(\infty)$. Then for every $x \in J$ and $y \in U_{w, \bar{a}}$ we have either $w(x + y) > w(x)$ or $w(x + y) > w(a)$, hence $x + U_{w, \bar{a}} \subseteq J$ and J is open in R_w. Since J is a subgroup of R_w, J is clopen. Now let J be closed in R_w and let $x \in w^{-1}(\infty)$. Then $x \in \overline{\{0\}}$, the closure of $\{0\}$ in R_w, and $\{0\} \subseteq J$.

Lemma 2. A ring K contains no zero divisors if there exists a nontrivial valuation on K such that the associated topology is Hausdorff.

Proof. Suppose that there exists a nontrivial valuation w on K such that $(K, \overline{\tau}_w)$ is Hausdorff. Then $w^{-1}(\infty) \subseteq \{0\} = \{0\}$. If there is a zero divisor in K, then there exists $x \in w^{-1}(\infty), x \neq 0$, which cannot happen.

Further, suppose that A is an integral domain with the quotient field K and let Ω be the family of nontrivial valuations on K which are nonnegative on A and put

$$\overline{\Omega} = \sup\{\overline{\tau}_w : w \in \Omega\}.$$
If \((\hat{K}_w, \hat{\mathfrak{m}}_w)\) and \((\hat{K}, \hat{\mathfrak{m}})\) are the completions of \((K, \mathfrak{m}_w)\) and \((K, \mathfrak{m})\), respectively, we denote by \(\hat{w}, \hat{\mathfrak{m}}\) the continuous extension of \(w\) on \(\hat{K}_w\) and \(\hat{K}\), respectively. It is well known that \(\hat{w}\) is a valuation on the field \(\hat{K}_w\) and \(\hat{\mathfrak{m}}_w = \mathfrak{m}_w\).

Lemma 3. \(\hat{w}\) is a Manis valuation on \(\hat{K}\) for any \(w \in \Omega\).

Proof. We obtain the result from the fact that \(K\) is a dense subset in the Hausdorff space \(\hat{K}\) and \(\hat{w}\) is continuous.

Now, since \(\hat{w}\) is a Manis valuation on \(\hat{K}\), it defines a topology \(\mathcal{T}_w\) on \(\hat{K}\). Then we can prove the following:

Proposition 4. \(\widehat{\mathcal{T}} = \sup(\mathcal{T}_w : w \in \Omega)\).

Proof. We consider the following diagram

\[
\begin{array}{ccc}
K & \xrightarrow{f_w} & K_w = (K, \mathcal{T}_w) \\
\downarrow{i} & & \downarrow{i_w} \\
\hat{K} & \xrightarrow{\hat{f}_w} & \hat{K}_w \\
\sim{w} & & \hat{w} \\
\end{array}
\]

where \(w \in \Omega\), \(\hat{f}_w\) is the continuous extension of \(f_w = \text{id}_K\) and \(i\), \(i_w\) are the canonical injections. We have \(\hat{w} \cdot i = w, \hat{f}_w \cdot i = i_w \cdot f_w, w = \hat{w} \cdot i_w \cdot f_w\); thus \(\hat{w} \cdot i = \hat{w} \cdot \hat{f}_w \cdot i\). Since \(i(K)\) is a dense subset in the Hausdorff space \(\hat{K}\), we obtain \(\hat{w} = \hat{w} \cdot \hat{f}_w\). Now, since \(U_{w,\alpha} = \hat{f}_w^{-1}(U_{w,\alpha})\) for every \(\alpha \in G_w^+, w \in \Omega\), \(U_{w,\alpha}\) is open in \(K_w\); it follows that \(U_{w,\alpha}\) is open in \(\hat{K}_w\); thus \(\widehat{\mathcal{T}} \supset \mathcal{T}_w\) for every \(w \in \Omega\). Suppose that \(\mathcal{T}\) is a topology on \(\hat{K}\) such that \(\mathcal{T} \supset \mathcal{T}_w\) for every \(w \in \Omega\). Then from the fact that \(\hat{w} = \hat{w} \cdot \hat{f}_w\), we obtain that \(\hat{f}_w\) is continuous in \((\hat{K}, \mathcal{T})\) for every \(w \in \Omega\). Thus, using the fact \(\widehat{\mathcal{T}} = \sup(\mathcal{T}_w : w \in \Omega)\), we obtain by [2, §3, Proposition 18], that the topology \(\widehat{\mathcal{T}}\) is the supremum of topologies on \(\hat{K}\) for which \(\hat{f}_w\), \(w \in \Omega\), are continuous. Hence, \(\widehat{\mathcal{T}} \leq \mathcal{T}\) and \(\widehat{\mathcal{T}} = \sup(\mathcal{T}_w : w \in \Omega)\).

Henceforth, we assume that \(K\) is a subring of \(\hat{K}\).

Proposition 5. Let \(w \in \Omega\) and let \((R_w, M(w))\) be the valuation pair associated with \(\hat{w}\). Let \(R_w\) be a valuation ring with the maximal ideal \(M(w)\) of a valuation \(w\) in a field \(K\). Then

\[
R_w = \overline{R_w}, \quad M(\hat{w}) = \overline{M(w)},
\]

where \(X\) is the closure of \(X\) in \((\hat{K}, \mathcal{T})\).

Proof. Let \(x \in \hat{K} - \overline{R_w}\). Then by Proposition 4, there exist \(w_1, \ldots, w_n \in \Omega, \alpha_i \in G_w^+\), \(i = 1, \ldots, n\), such that
There is no loss of generality in assuming that \(w \in \{ w_1, \ldots, w_n \} \), say \(w = w_1 \). Moreover, since \(K \) is a dense subset in \(\hat{K} \), there exists \(z \in K \) such that

\[
\hat{w}_1(z - x) > \alpha_i, \quad i = 1, \ldots, n.
\]

Hence, \(z \in K - R_w \) and \(w(z) = w_1(z) < 0 \). Suppose that \(w_1(z) \neq \hat{w}_1(x) \). Then

\[
\alpha_1 < \hat{w}_1(z - x) = \min \{ \hat{w}_1(x), w_1(z) \} < 0,
\]
a contradiction with \(\alpha_1 > 0 \). Thus, \(\hat{w}(x) = w(z) < 0 \) and \(x \notin R_w \). Therefore, \(R_w \subseteq \hat{R}_w \). On the other hand, \(R_w \) is closed in \(\hat{K} \) and we have \(\hat{R}_w \subseteq R_w \). Thus, \(R_w = \hat{R}_w \). The rest can be proved analogously.

For future investigation we need to solve the following problem. If \(w \) is a valuation on the quotient field \(K \) of \(A \) such that \(R_w = A_{P(w)} \), where \(P(w) = M(w) \cap A \), when \(R_w = (\hat{A}_w)_{P(\hat{w})} \) holds, where \(\hat{A}_w \) is the closure of \(A \) in \(\hat{K} \) and \(P(\hat{w}) = M(\hat{w}) \cap \hat{A}_w \). The following example shows that it does not hold in general.

Example. Let \(Q \) be the field of rational numbers and let \(X \) be an indeterminate over \(Q \). In the field \(Q(X) \) we define a valuation \(w \) in the following way.

\[
w \left(\sum_{i=0}^{n} a_i X^i \right) = k \Leftrightarrow a_0 = \cdots = a_{k-1} = 0, \quad a_k \neq 0;
\]

\[
w(f/g) = w(f) - w(g), \quad f, g \in Q[X], \quad g \neq 0, \quad w(0) = \infty.
\]

Then \(R_w \) is a discrete rank one valuation ring and \(R_w = Z[X]_{M(w) \cap Z[X]} \). Now in the quotient field \(Q((X)) \) of the ring \(Q[[X]] \) of formal power series over \(Q \), we define a valuation \(\hat{w} \) in the following way.

\[
\hat{w} \left(\sum_{n=0}^{\infty} a_n X^n \right) = k \Leftrightarrow a_0 = \cdots = a_{k-1} = 0, \quad a_k \neq 0, \quad a_n \in Q;
\]

\[
\hat{w}(f/g) = \hat{w}(f) - \hat{w}(g), \quad f, g \in Q[[X]], \quad g \neq 0, \quad \hat{w}(0) = \infty.
\]

Then \((Q((X)), \hat{R}_w) \) is the completion of \((Q(X), R_w) \), \(\hat{w} \) is the unique continuous extension of \(w \) on \(Q((X)) \) and \(Z[[X]] \) is the closure of \(Z[X] \) in \(Q((X)) \). To show that \(R_w \neq Z[[X]]_{M(\hat{w}) \cap Z[[X]]} \), we need a simple lemma.

Lemma. Let \(n \) be a natural number, \(z_i \in Z^+, \ i = 0, \ldots, n-1 \), be such that \(0 \leq z_i < p_{n-i} \), where \(p_i \) is the \(i \)-th prime number and let \(z_0(1/p_n) + z_1(1/p_{n-1}) + \cdots + z_{n-1}(1/2) \in \mathbb{Z} \). Then \(z_0 = z_1 = \cdots = z_{n-1} = 0 \).

Proof. The proof is by induction on \(n \). The lemma holds for \(n = 1 \). We assume that the lemma holds for \(n \). Let \(z_i \in \mathbb{Z}, \ i = 0, \ldots, n \), be such that \(0 \leq z_i < p_{n+1-i} \), and let \(z_0(1/p_n) + \cdots + z_n(1/2) \in \mathbb{Z} \). Let \(z'_i, \ i = \)
0, \ldots, n - 1, be such that
\[z_{i+1} \equiv z'_i \pmod{p_{n-i}}, \quad 0 \leq z'_i < p_{n-i}. \]
Then \(z'_0(1/p_n) + \cdots + z'_{n-1}(1/2) \in Z, \) and by induction we have \(z'_0 = \cdots = z'_{n-1} = 0. \) Hence, \(z_1 p_{n+1}/p_n \in Z, \ldots, z_n p_{n+1}/2 \in Z, \) and we obtain \(z_0 = z_1 = \cdots = z_n = 0. \)

Now, \(f = 1 + (1/2)X + \cdots + (1/p_n)X^n + \cdots \in R_\infty. \) We suppose that there exist \(u = \sum a_n X^n, \ v = \sum b_n X^n \in Z[[X]] \) such that \(a_0 \neq 0 \) and \(v = f \cdot u. \) Then for any natural \(n \) we have
\[b_n = a_n + (1/2)a_{n-1} + \cdots + (1/p_n)a_0. \]
Let \(a_{n-i} = z_{n-i} \pmod{p_i}, \ i = 1, \ldots, n, \ 0 \leq z_{n-i} < p_i. \) Then \(z_0(1/p_n) + \cdots + z_{n-1}(1/2) \in Z, \) and by the lemma we have \(z_0 = \cdots = z_{n-1} = 0. \) Thus, \(p_n \) divides \(a_0 \) for every \(n, \) a contradiction.

The partial solution of the problem gives the following two propositions.

Proposition 6. Let \(w \) be a discrete rank one valuation on the quotient field \(K \) of \(A \) such that \(R_w = A_{P(w)} \) and let \(P(w) \) be a maximal ideal of \(A. \) Then \(R_w = \hat{A}_w. \)

Proof. It is well known that in this case \(\mathfrak{g}_w \) is the \(M(w) \)-adic topology. Then \(\hat{A}_w \) is the completion of \(A \) in \(P(w) = M(w) \cap A \)-adic topology and, since \(P(w) \) is maximal in \(A, \) \(\hat{A}_w \) is local with the unique maximal ideal \(P(\hat{w}) = M(\hat{w}) \cap \hat{A}_w. \) Hence, \(R_w = A_{P(w)} \subseteq (\hat{A}_w)_{P(\hat{w})} = \hat{A}_w \) and \(R_w = \hat{R}_w \subseteq \hat{A}_w, \) where the vinculum denotes the closure in \(\hat{K}_w. \) Therefore, \(R_w = \hat{A}_w. \)

Using the example it should be observed that “\(P(w) \) is maximal” cannot be removed from Proposition 6.

The following proposition follows immediately from [10, Theorem 2.1].

Proposition 7. \(R_w = (\hat{A}_w)_{P(\hat{w})} \) if and only if there exists an order epimorphism \(f \) from a group of divisibility \(G(\hat{A}_w) \) of \(\hat{A}_w \) onto \(G_w \) such that \(f \cdot v = \hat{w}, \) where \(v \) is the canonical map from \(K^* \) onto \(G(\hat{A}_w). \)

Further, if \(R_w = (\hat{A}_w)_{P(\hat{w})} \) for a valuation \(w, \) it is natural to ask when \(R_w = \hat{A}_w \) for \(P(w) = M(\hat{w}) \cap \hat{A}_w. \) To solve this problem, we prove two lemmas.

At first, on the family \(\Omega \) we may define an equivalence relation
\[w \equiv w' \quad \text{if and only if} \quad w, w' \text{ are dependent.} \]
Let \(\Omega_0 \) be a family of representatives of the equivalence classes.

Lemma 8. Let for every \(w \in \Omega_0, x_w \) be an element from \(\hat{K}_w. \) Then there exists \(x \in \hat{K} \) such that \(\hat{f}_w(x) = x_w \) for every \(w \in \Omega_0. \) Furthermore, if \(x_w \neq 0 \) for every \(w \in \Omega_0, \) \(x \) is regular.

Proof. We set \(\Delta = \prod(i_w: w \in \Omega_0), \) where \(i_w: K \to \hat{K}_w \) is the canonical map. Then using the approximation theorem for independent valuations, we obtain that
$\Delta: K \to \prod \{ \hat{K}_w: w \in \Omega_0 \}$

is a completion of the topological field (K, \mathbb{K}), and the canonical projection map pr_w of $\Pi(\hat{K}_w: w \in \Omega_0)$ onto \hat{K}_w is the unique continuous homomorphism such that

$$i_w \cdot f_w = \text{pr}_w \cdot \Delta, \quad w \in \Omega_0.$$

Now, since $i: K \to \hat{K}$ is the completion of K, there exists an isomorphism φ such that $\varphi \cdot \Delta = i$. Then $(\hat{f}_w \cdot \varphi) \cdot \Delta = \hat{f}_w \cdot i = i_w \cdot f_w$, hence $\text{pr}_w = \hat{f}_w \cdot \varphi$ for every $w \in \Omega_0$. Let $(x_w) \in \Pi \{ \hat{K}_w: w \in \Omega_0 \}$. We set $x = \varphi((x_w)) \in \hat{K}$. Then $\hat{f}_w(x) = \text{pr}_w((x_w)) = x_w$ and if $x_w \neq 0$ for every $w \in \Omega_0$, (x_w) is regular in $\Pi(\hat{K}_w: w \in \Omega_0)$. Thus, x is regular in \hat{K}.

For the second lemma we need some notation from \cite{5}. Let $w, w' \in \Omega$. If $R_w \subseteq R_w'$ we say that w' is coarser than w and write $w' < w$. If $w' < w$ then $G_w = G_w/H$, where H is an isolated subgroup of G_w. Since the valuations coarser than w are totally ordered there will be a finest valuation $w'' = w' \wedge w$ coarser than both w, w'. Let H be a corresponding subgroup of G_w. Then we denote by $(w,w')\overline{\alpha}$ the element $\psi(\alpha)$, where $\psi: G_w \to G_w$ is the canonical map and $\alpha \in G_w$. Now, let $w_1, \ldots, w_n \in \Omega$. Let $(a_1, \ldots, a_n) \in G_{w_1} \times \cdots \times G_{w_n}$, $b_i \in K, 1 \leq i \leq n$. We define $((a_1, \ldots, a_n), (b_1, \ldots, b_n))$ to be concordant when the following conditions hold:

1. If $(a_i)\overline{\alpha} = (a_j)\overline{\alpha}$ then $(a_i)\overline{\alpha} \leq (a_j)\overline{\alpha}$.
2. If $(a_i)\overline{\alpha} > (a_j)\overline{\alpha}$ then $(a_i)\overline{\alpha} = (a_j)\overline{\alpha} (b_i - b_j)$.

where $(w,w')\overline{\alpha} = (w,w')\overline{\alpha}$. Then we say that Ω satisfies the weak reinforced approximation theorem (W.R.A.T.) for A if, for any finite number $w_i \in \Omega$, $i = 1, \ldots, n$, of valuations with $(\alpha_1, \ldots, \alpha_n) \in G_{w_1}^+ \times \cdots \times G_{w_n}^+$ and $(b_1, \ldots, b_n) \in \mathbb{A}$ such that $((\alpha_1, \ldots, \alpha_n), (b_1, \ldots, b_n))$ is concordant, there exists $\alpha \in A$ such that

$$w_i(\alpha - b_i) = \alpha_i \quad i = 1, \ldots, n.$$

By \cite[Proposition 24]{5}, for every Prüfer domain A, Ω satisfies the W.R.A.T.

LEMMA 9. Let Ω satisfy the W.R.A.T. for A. Then

$$\hat{A} = \cap \{ \hat{f}_w^{-1}(\hat{A}_w): w \in \Omega_0 \}.$$

PROOF. At first, since \hat{f}_w is the continuous extension of $f_w = \text{id}_K$ for every w, we have $\hat{f}_w(\hat{A}) \subseteq \hat{f}_w(A) = \hat{A}_w$. Conversely, let $x \in \hat{f}_w^{-1}(\hat{A}_w)$ for every $w \in \Omega_0$. Let $w_i \in \Omega_0, i = 1, \ldots, n$, $\alpha_i \in G_{w_i}^+$. Then since A is a dense subset in \hat{A}_w, for every $i, 1 \leq i \leq n$, we may find an element y_i such that

$$w_i(y_i) \geq \alpha_i, \quad i = 1, \ldots, n.$$

Now, since w_i are pairwise independent, $((\alpha_1, \ldots, \alpha_n), (y_1, \ldots, y_n))$ is concordant. Thus, there exists $\alpha \in A$ such that $w_i(\alpha - y_i) \geq \alpha_i, \quad i = 1, \ldots, n$.

Then using the identity $\hat{w}_i = w_i \cdot \hat{f}_w$ from the proof of Proposition 4, we have
\[\hat{w}_i(a - x) = \hat{w}_i \cdot \hat{f}_{w_i}(a - x) = \hat{w}_i \left(a - \hat{f}_{w_i}(x) \right) \]
\[= \hat{w}_i \left(a - y_i + y_i - \hat{f}_{w_i}(x) \right) > \alpha_i, \quad 1 \leq i \leq n. \]

Therefore, \(A \) is a dense subset in \(\bigcap \{ \hat{f}_{w_i}^{-1}(\hat{A}_w) : w \in \Omega_0 \} \).

Proposition 10. Let \(w \in \Omega \) be such that \(R_w = \hat{A}_{\{P(\hat{w})\}} \). Then \(R_w = (\hat{A}_w)_{P(\hat{w})} \).

Conversely, if \(\Omega \) satisfies the W.R.A.T. for \(A \) and if \(R_w = (\hat{A}_w)_{P(\hat{w})} \), then
\[R_w = \hat{A}_{\{P(\hat{w})\}}, \quad M(\hat{w}) = [P(\hat{w})] \hat{A}_{\{P(\hat{w})\}}. \]

Proof. Let \(R_w = \hat{A}_{\{P(\hat{w})\}} \) and let \(x \in R_w \). Then for \(y \in \hat{f}_{w_s}^{-1}(x) \) there exists \(z \in \hat{A} - P(\hat{w}) \) such that \(y \cdot z \in \hat{A} \). Hence, \(x \cdot \hat{f}_{w_s}(z) \in \hat{A}_w \) and \(\hat{f}_{w_s}(z) \in \hat{A}_w - P(\hat{w}) \). Thus, \(x \in (\hat{A}_w)_{P(\hat{w})} \). The converse inclusion is trivial. Conversely, let \(R_w = (\hat{A}_w)_{P(\hat{w})} \). Let \(\Omega_0 \) be the family of representatives of the equivalence classes of \(\equiv \) such that \(w \in \Omega_0 \). Let \(x \in R_w \). Then there exists \(y_w \in \hat{A}_w - P(\hat{w}) \) such that \(y_w \cdot \hat{f}_{w_s}(x) \in \hat{A}_w \). Further, since \(\hat{K}_w \) is the quotient field of a domain \(\hat{A}_w \) for every \(w' \in \Omega_0 \), there exist \(y_{w'} \in \hat{A}_{w'}, w' \in \Omega_0, w' \neq w \), such that \(y_w \cdot \hat{f}_{w_s}(x) \in \hat{A}_{w'} \). Now, by Lemma 8, there exists \(y \in \hat{K} \) such that \(\hat{f}_{w_s}(y) = y_{w'}, w' \in \Omega_0 \). Then by Lemma 9, \(y \in \hat{A} \), and using the identity \(\hat{w} = \hat{w} \cdot \hat{f}_{w_s}, y \in \hat{A} - P(\hat{w}) \). Further,
\[\hat{f}_{w_s}(y \cdot x) = y_w \cdot \hat{f}_{w_s}(x) \in \hat{A}_{w'}, \quad w' \in \Omega_0, \]
hence \(y \cdot x \in \hat{A} \). Therefore, \(x \in \hat{A}_{\{P(\hat{w})\}} \). The converse inclusion is trivial.

Further, it is clear that \([P(\hat{w})] \hat{A}_{\{P(\hat{w})\}} \subseteq M(\hat{w}) \). Let \(y \in M(\hat{w}) \subseteq \hat{A}_{\{P(\hat{w})\}} \). Then there exists \(z \in \hat{A} - P(\hat{w}) \) such that \(y \cdot z \in \hat{A} \) and it is easy to see that \(y \cdot z \in P(\hat{w}) \). Thus, \([P(\hat{w})] \hat{A}_{\{P(\hat{w})\}} = M(\hat{w}) \).

Lemma 11. Let \(\Omega \) satisfy the W.R.A.T. for \(A \). Then \(\hat{A} = \bigcap \{ R_w : w \in \Omega_0 \} \) if and only if \(A \) is a dense subset in \((R_w, \bigcap_w R_w) \) for every \(w \in \Omega_0 \).

Proof. If \(A \) is a dense subset in \(R_w \), then \(\hat{A}_w = R_w \) and the rest follows by Lemma 9. Conversely, let \(\hat{A} = \bigcap \{ R_w : w \in \Omega_0 \} \). If \(A \) is not a dense subset in \(R_w \) for some \(w \in \Omega_0 \), then \(\hat{A}_w \neq R_w \), and there exists \(x_w \in \hat{A}_w \) such that \(\hat{f}_{w_s}(x_w) \in \hat{A}_w \). Further, let for every \(w' \in \Omega_0, w' \neq w, x_w \in R_{w'} \). By Lemma 8, there exists \(x \in \hat{K} \) such that \(\hat{f}_{w_s}(x) = x_w \) for every \(w' \in \Omega_0 \). Thus, \(x \in \hat{f}_{w_s}^{-1}(R_{w'}) = R_w, w' \in \Omega_0 \). Hence, \(x \in \hat{A} \) and \(x_w \in \hat{A}_w \), a contradiction.

Theorem 12. Let \(A \) be a Prüfer domain such that there exists a family \(\Omega_0 \) of representatives of the equivalence classes of \(\equiv \) such that \(A \) is a dense subset in \((R_w, \bigcap_w R_w) \) for every \(w \in \Omega_0 \). Then \(\hat{A} \) is a Prüfer ring.

Proof. By Lemma 11, \(\hat{A} = \bigcap \{ R_w : w \in \Omega_0 \} \). Let \(a, b \in \hat{A} \) be such that the ideal \((a, b) \) in \(\hat{A} \) is regular. Since \(R_w \) is a valuation domain, for every \(w \in \Omega_0 \) there exists \(x_w \in R_w \) such that \((\hat{f}_{w_s}(a), \hat{f}_{w_s}(b)) R_w = x_w R_w \). By Lemma 8, there exists \(x \in \hat{K} \) such that \(\hat{f}_{w_s}(x) = x_w \) for every \(w \in \Omega_0 \). Hence \(x \in R_w \) for every \(w \in \Omega_0 \) and \(x \in \hat{A} \). Then using the identity \(\text{pr}_w = \hat{f}_{w_s} \cdot \varphi \) from the proof of Lemma 8, we obtain \((a, b) = x \hat{A} \), where \(x \) is regular. Thus \((a, b) \) is invertible and, by the definition, \(\hat{A} \) is a Prüfer ring.
It should be observed that there is a reasonably large class of Prüfer domains which satisfy the conditions of Theorem 12. In fact, every \(h \)-local Prüfer domain is of such type. Recall that an integral domain \(A \) is said to be \(h \)-local if every nonzero ideal of \(A \) is contained in only a finite number of maximal ideals, and if every nonzero prime ideal of \(A \) is contained in only one maximal ideal. Then by [9, Theorem 22], \(A \) is \(h \)-local if and only if \(A = \prod \{ A_M : M \in \text{mspec } A \} \), where \(\text{mspec } A \) is the set of maximal ideals of \(A \), \(\tilde{A} \) is the completion of \(A \) in the \(A \)-topology, and \(\tilde{A}_M \) is the completion of \(A_M \) in the \(A_M \)-topology, where for any ring \(R \) the \(R \)-topology is the topology on \(R \) with the ideals \(rR \), \(r \in R^* \), being a subbase for the open neighbourhoods of 0 in \(R \).

The following lemma holds.

Lemma 13. Let \(A \) be a \(h \)-local Prüfer domain. Then the topology \(\sup \{ \mathfrak{F}_w : w \in \Omega \} \) on \(A \) is the same as the \(A \)-topology.

Proof. Let \(w_i \in \Omega \), \(\alpha_i \in G^+_w \). Then there exist \(a_i \in A \), \(i = 1, \ldots, n \), such that \(w_i(a_i) > \alpha_i \). Then

\[
a_1A \cap \cdots \cap a_nA \subseteq \bigcap_{i=1}^n U_{w_i, \alpha_i}.
\]

Conversely, let \(a \in A^* \). Then since \(A \) is \(h \)-local, there exist only a finite number of maximal ideals \(M_1, \ldots, M_n \in \text{mspec } A \) such that \(a \in M_i \). Let \(w_i \in \Omega \), \(i = 1, \ldots, n \), be such that \(M_i = P(w_i) \), and we set \(\alpha_i = w_i(a) \). Let \(x \in A \cap \bigcap_{i=1}^n U_{w_i, \alpha_i} \). If \(x \notin aA \), then there exists \(w \in \Omega \) such that \(w(\alpha^{-1}) < 0 \). Since \(w \neq w_i \), we have \(a \notin P(w) \) and \(w(\alpha^{-1}) = w(x) > 0 \), a contradiction. Thus, \(\bigcap_{i=1}^n U_{w_i, \alpha_i} \cap A \subseteq aA \) and \(\sup \{ \mathfrak{F}_w \} \) on \(A \) is the \(A \)-topology.

Since for every \(h \)-local Prüfer domain \(A \), the family \(\Omega_0 = \{ \langle \omega \in \Omega : P(\omega) \in \text{mspec } A \} \) is a set of representatives of the equivalence classes of \(\equiv \), \(A \) satisfies the conditions of Theorem 12 and \(\tilde{A} \) is a Prüfer ring.

Further, we say that a ring \(A \) with the total quotient ring \(K \) is a \(\tilde{A} \)-Prüfer ring, where \(\tilde{A} \) is a ring topology on \(K \) if, for every maximal regular ideal \(m \) of \(A \), \((A_m|P|A|_m) \) is a valuation pair associated with a valuation \(w \) on \(K \) such that \(w \) is continuous in \(\tilde{A} \).

To generalize the definition of \(w \)-closed ideals, we say that an ideal \(Q \) of \(A \) is \(\tilde{w} / A \)-closed for some \(w \in \Omega \) if \(x \in Q \), \(y \in A \), and \(\tilde{w}(x) < \tilde{w}(y) \) imply \(y \in Q \).

We are now ready to prove the main theorem.

Theorem 14. Let \(A \) be a Prüfer domain. Then the following conditions are equivalent.

1. \(\tilde{A} \) is a \(\tilde{\tilde{A}} \)-Prüfer ring.
2. For every maximal regular ideal \(m \) of \(\tilde{A} \) there exists \(w \in \Omega \) such that \(m \) is \(\tilde{w} / A \)-closed and \(R_w = (\tilde{A}_w)_{P(\tilde{w})} \) for every \(w \in \Omega \).
3. Every maximal regular ideal of \(\tilde{A} \) is open in \(\tilde{A} \) and \(R_w = (\tilde{A}_w)_{P(\tilde{w})} \) for every \(w \in \Omega \).
Proof. (1) \(\Rightarrow\) (2). Let \(m\) be a maximal regular ideal of \(\hat{A}\). Then \((\hat{A}_{[m]}, [m]/\hat{A}_{[m]})\) is a valuation pair associated with a valuation \(v\) continuous in \(\mathcal{F}\). Let \(w = v|K\). It is easy to see that \(w\) is a valuation on \(K\). If \(w\) is the trivial one, it follows since \(w\) is continuous in \(\mathcal{F}\), that \(\mathcal{F}\) is discrete. Thus, \(K = K, \hat{A} = A, m = M(w) \cap A = (0)\), a contradiction with \(m\) regular. Hence \(w\) is nontrivial, \(w \in \Omega, \hat{w} \text{ and } v\) are the continuous extensions of \(w\) on \(K\). Since \(K\) is Hausdorff, we obtain \(\hat{w} = v\). Hence \(R_{\hat{w}} = \hat{A}_{[m]}, M(\hat{w}) = [m]\hat{A}_{[m]}\) and it is easy to see that \(\hat{A}_{[m]} = \hat{A}_{[P(\hat{w})]}, P(\hat{w}) = m\). Thus, \(m\) is \(\hat{w}/\hat{A}\)-closed and the rest follows by Proposition 10.

(2) \(\Rightarrow\) (3). Let \(m\) be a maximal regular ideal of \(\hat{A}\) and let \(x \in m\) be regular. Then for \(z \in U_{\hat{w}, \hat{w}(x)} \cap \hat{A}\) we have \(\hat{w}(y + z) \geq \hat{w}(z) \geq \hat{w}(x)\) if \(\hat{w}(y) \geq \hat{w}(z)\) and \(\hat{w}(y + z) = \hat{w}(y)\) if \(\hat{w}(y) < \hat{w}(z)\). Hence \(y + z \in m\) and \(m\) is open in \(\hat{A}\).

(3) \(\Rightarrow\) (1). Let \(m\) be a maximal regular ideal of \(\hat{A}\) and \(P = A \cap m\). Since \(A\) is a dense subset in \(\hat{A}\), and \(m\) is open in \(\hat{A}\), it follows that \(m = m \cap A = P\), where the vinculum denotes the closure in \(\hat{A}\). Since \(m\) is regular, we have \(P \neq (0)\). Let \(w \in \Omega\) be such that \(R_w = A_P\). By Proposition 10, \(R_{\hat{w}} = \hat{A}_{[P(\hat{w})]}\). It is clear that \(P \subseteq P(\hat{w})\). Suppose that there exists \(x \in P(\hat{w}) - P\); then for some \(w_1, \ldots, w_n \in \Omega, \alpha_i \in G_{w_i}^+, i = 1, \ldots, n\), we have

\[
\left(x + \bigcap_{i=1}^n U_{w_i, \alpha_i} \right) \cap P = \emptyset.
\]

On the other hand, there exists \(a \in A\) such that

\[
\hat{w}_i(a - x) > \alpha_i, \quad i = 1, \ldots, n.
\]

Again, there is no loss of generality in assuming that \(w \in \{w_1, \ldots, w_n\}\), say \(w = w_1\). Then since \(P = P(\hat{w})\), it follows that

\[
\alpha_1 < \hat{w}_1(a - x) = \min\{w_1(a), \hat{w}_1(x)\} = 0,
\]

a contradiction. Thus, \(P(\hat{w}) = P = m\), and \((\hat{A}_{[m]}, [m]\hat{A}_{[m]})\) is a valuation pair associated with the valuation \(w\) continuous in \(\mathcal{F}\). Therefore, \(\hat{A}\) is a \(\mathcal{F}\)-Prüfer ring.

We have not been able to show that there exists a Prüfer domain \(A\) such that \(\hat{A}\) is not a \(\mathcal{F}\)-Prüfer ring, and we do not know if there is a Prüfer domain \(A\) such that \(\hat{A}\) is a Prüfer ring but \(\hat{A}\) is not a \(\mathcal{F}\)-Prüfer ring.

Finally, we say that a ring \(A\) with the total quotient ring \(K\) is a \(\mathcal{F}\)-ring for some ring topology \(\mathcal{F}\) on \(K\), if for every maximal regular ideal \(m\) of \(A\), \((A_{[m]}, [m]A_{[m]})\) is a valuation pair associated with a valuation \(w\) on \(K\) continuous in \(\mathcal{F}\) and such that \(G_w = Z\).

Theorem 15. Let \(A\) be an almost Dedekind domain. Then the following conditions are equivalent.

(1) \(\hat{A}\) is a \(\mathcal{F}\)-ring.

(2) For every maximal regular ideal \(m\) of \(\hat{A}\) there exists \(w \in \Omega\) such that \(m\) is \(\hat{w}/\hat{A}\)-closed.

(3) Every maximal regular ideal of \(\hat{A}\) is open in \(\hat{A}\).
Proof. The proof of implications (1) ⇒ (2) ⇒ (3) is quite the same as the one of Theorem 14.

(3) ⇒ (1). Let \(m \) be a maximal regular ideal of \(\hat{A} \) and \(P = m \cap A \). Again, \(m = m \cap A = \hat{P} \), and it follows that \(P \neq (0) \). Since \(A \) is almost Dedekind, \(A_P = R_\omega \) is a discrete rank one valuation domain and \(P \) is a maximal ideal of \(A \). Then by Proposition 6, \(R_\omega = \hat{A}_\omega \) and by Proposition 10, \(R_\omega = \hat{A}_{[P(\omega)]} \). The rest of this proof is the same as the one of Theorem 14.

References

Department of Mathematics, Mining University, 708 33 Ostrava 4, Czechoslovakia