TRANSFORMATIONS INTO BAIRE 1 FUNCTIONS

A. M. BRUCKNER, ROY O. DAVIES AND C. GOFFMAN

Abstract. A measurable \(f \) from \(I = [0, 1] \) to \(\mathbb{R} \) is equivalent to a Baire 2 function but may not be equivalent to any Baire 1 function. Gorman has obtained the following interesting contrasting facts. If \(f \) assumes finitely many values there is a homeomorphism \(h \) of \(I \) such that \(f \circ h \) is equivalent to a Baire 1 function, but there is a measurable \(f \) which assumes countably many values which does not have this property. However, the example of Gorman is such that for some homeomorphisms \(h \) the function \(f \circ h \) is not measurable. It is shown here that if \(f \circ h \) is measurable, for every homeomorphism \(h \), then there is an \(h \) for which \(f \circ h \) is equivalent to a Baire 1 function.

1. A measurable \(f \) from \(I = [0, 1] \) to \(\mathbb{R} \) is equivalent to a Baire 2 function but may not be equivalent to any Baire 1 function. Gorman [1] has obtained the following interesting contrasting facts. If \(f \) assumes finitely many values there is a homeomorphism \(h \) of \(I \) such that \(f \circ h \) is equivalent to a Baire 1 function, but there is a measurable \(f \) which assumes countably many values which does not have this property. However, the example of Gorman is such that for some homeomorphisms \(h \) the function \(f \circ h \) is not measurable.

A function \(f \) is said to be absolutely measurable if for every homeomorphism \(h \) of \(I \) the function \(f \circ h \) is measurable. This is tantamount to saying that \(f \) is measurable with respect to every Lebesgue-Stieltjes measure derived from a strictly increasing continuous distribution function. We prove the following result.

Theorem. If \(f : I \to \mathbb{R} \) is absolutely measurable there is a homeomorphism \(h \) of \(I \) such that \(f \circ h \) is equivalent to a Baire 1 function.

2. We give some preliminary definitions and lemmas. A set \(E \subset I \) is of absolute measure zero if for every homeomorphism \(h \) the set \(h(E) \) is of measure zero. A point \(x \in I \) is a c-point of a set \(E \) if for every neighborhood \(N \) of \(x \) the set \(N \cap E \) has cardinality \(c \) and \(x \) is a perfect c-point of \(E \) if for every neighborhood \(N \) of \(x \) the set \(N \cap E \) contains a nonempty perfect set. \(E \) is c-dense (perfectly dense) in a set \(D \) if every point of \(D \) is a c-point (perfect c-point) of \(E \). Gorman [2] has obtained the following lemma.

Lemma 1. If \(E \subset I \) is of the first category there is a homeomorphism \(h \) of \(I \)

Received by the editors March 18, 1977.

1Supported in part by NSF Grant No. MCS-76-06573.

© American Mathematical Society 1977

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
such that \(h(E) \) is of measure zero. If \(E \subseteq I \) is an \(F_\alpha \) set and is \(c \)-dense in \(I \) there is a homeomorphism \(h \) of \(I \) such that \(h(E) \) has measure one.

For every \(E \subseteq I \) let \(P(E) \) be the set of points in \(I \) which are perfect \(c \)-points of \(E \).

Lemma 2. If \(E \subseteq I \) is absolutely measurable the set \(E \setminus P(E) \) is of absolute measure 0.

Proof. Since \(P(E) \) is closed, \(E \setminus P(E) \) is absolutely measurable. Since \(E \setminus P(E) \) has no perfect \(c \)-points neither does \(h(E \setminus P(E)) \) for any homeomorphism \(h \) of \(I \). So \(h(E \setminus P(E)) \) has measure 0.

Let \(E \) be absolutely measurable and let \(G(E) = P(E)^0 \). Partition \(E \) into 3 sets, \(E^* = E \cap G(E) \), \(E^{**} = E \cap [P(E) \setminus G(E)] \), and \(E^{***} = E \setminus P(E) \).

Lemma 3. \(E^* \) is perfectly dense in \(G(E) \), \(E^{**} \) is nowhere dense, and \(E^{***} \) is of absolute measure 0.

Proof. By Lemma 2.

Lemma 4. Let \(J = \bigcup_1^\infty E_n \), where \(J \subseteq I \) is an open interval and each is absolutely measurable. There is an \(n \) such that \(G(E_n) \) is nonempty.

Proof. Otherwise \(J = (\bigcup_1^\infty E_n^{**}) \cup (\bigcup_1^\infty E_n^{***}) \). The set \(\bigcup_1^\infty E_n^{**} \) is of the first category so that by Lemma 1 there is a homeomorphism \(h \) such that \(h(\bigcup E_n^{**}) \) is of measure 0. But \(\bigcup E_n^{***} \) is of absolute measure 0 so that \(h(\bigcup E_n^{**}) \) is also of measure 0.

3. We now prove the main lemma.

Lemma 5. If \(f: I \to R \) is absolutely measurable and takes only countably many values, there is a homeomorphism \(h \) of \(I \) such that \(f \circ h \) is equivalent to a Baire 1 function.

Proof. Let \(\{a_n\} \) be the sequence of values assumed by \(f \) and let \(E_n = f^{-1}(a_n) \), \(n = 1, 2, \ldots \). The sets \(E_n \) are absolutely measurable and their union is \(I \). Denote the open components of \(P(E_1)^0 \) by \(I_{11}, I_{12}, \ldots \) and the open components of \(I \setminus P(E_1) \) by \(J_{11}, J_{12}, \ldots \), and for each \(n = 2, 3, \ldots \) the open components of \(P(E_n)^0 \cap (\bigcup_m J_{n-1,m}) \) by \(I_{n1}, I_{n2}, \ldots \) and the open components of \((\bigcup_m J_{n-1,m}) \setminus P(E_n) \) by \(J_{n1}, J_{n2}, \ldots \). It follows by Lemma 4 that the union \(G \) of all the \(I_{nm} \) is a dense open subset of \(I \). By Lemma 1, there is a homeomorphism \(h_1 \) of \(I \) such that \(h_1^{-1}(G) \) has measure one. Now \(E_n \cap I_{nm} \) contains an \(F_\alpha \) set which is \(c \) dense in \(I_{nm} \). So by Lemma 1, the homeomorphism \(h_1 \) may be modified on each \(h_1^{-1}(I_{nm}) \) to a homeomorphism \(h \) so that \(h^{-1}(E_n \cap I_{nm}) \) is of full measure in \(h^{-1}(I_{nm}) \). Define

\[
g(x) = \begin{cases}
a_n & \text{if } x \in h^{-1}(I_{nm}) \text{ for some } n, m, \\
0 & \text{otherwise.}
\end{cases}
\]

Then \(g \) is Baire 1 and \(f \circ h \) is equal almost everywhere to \(g \).
4. The following lemma serves as a bridge for carrying our result from countable valued functions to arbitrary absolutely measurable functions.

Lemma 6. If \(f: I \rightarrow R \) is absolutely measurable, and \(P \subseteq I \) is perfect there is a perfect \(Q \subseteq P \) such that \(f|Q \) is continuous.

Proof. There is a homeomorphism \(h \) of \(I \) such that \(h^{-1}(P) \) has positive measure. By Lusin's theorem \(f \circ h \) is continuous on a perfect subset \(R \) of \(h^{-1}(P) \) of positive measure. Set \(Q = h(R) \).

We also need the following two lemmas.

Lemma 7. Let \(f: I \rightarrow R \). There is a homeomorphism \(h \) of \(I \) such that \(f \circ h \) equals a Baire 1 function almost everywhere if and only if there is a \(c \)-dense \(F_\sigma \) set \(E \) and a Baire 1 function \(g \) such that \(f(x) = g(x) \) for every \(x \in E \).

Proof. This follows from Lemma 1 and the fact that a set of full measure in \(I \) contains an \(F_\sigma \) set which is a \(c \)-dense in \(I \).

Lemma 8. If \(E \subseteq I \) is of type \(F_\sigma \) and is \(c \)-dense in an open set \(H \) and \(S \) is the union of a nowhere dense set and a set of absolute measure 0, then \(E \setminus S \) contains an \(F_\sigma \) set \(F \) which is \(c \)-dense in \(H \).

Proof. There is a homeomorphism \(h \) such that \(h(H) \) and \(h(E) \) have the same measure. But \(h(S) \) is the union of a nowhere dense set and a set of measure 0. Then \(h(E \setminus S) \) contains an \(F_\sigma \) set \(K \) which is \(c \)-dense in \(h(H) \), and \(h^{-1}(K) \subseteq E \setminus S \) is \(c \)-dense in \(H \).

5. We are now ready to prove the theorem.

Theorem 1. Every absolutely measurable function on \(I = [0, 1] \) can be transformed by a homeomorphic change of variable into a function which is equal almost everywhere to a Baire 1 function.

Proof. Let \(f \) be absolutely measurable. By Lemma 7, it suffices to show that there is a \(g \) in Baire 1 such that \(f(x) = g(x) \) on a set containing a \(c \)-dense \(F_\sigma \). Let \(\{f_k\} \) take on only values of the form \(m/2^{k-1} \) such that

\[
(i) \quad f_k(x) \leq f(x) < f_k(x) + \frac{1}{2^{k-1}} \quad \text{for every } x \in I.
\]

Then each \(f_k \) is absolutely measurable. By Lemmas 5 and 7 there is a Baire 1 function \(b_1 \) such that the set of points for which \(b_1(x) = f_1(x) \) contains a \(c \)-dense set \(E \) of type \(F_\sigma \).

Let \(A = \{f_1(x) = f_2(x)\} \cap E \). Then \(A \) is absolutely measurable so that, by Lemma 3, there are pairwise disjoint sets \(A^*, A^{**}, \) and \(A^{***} \) such that \(A = A^* \cup A^{**} \cup A^{***} \) and \(A^* \) is perfectly dense on an open set \(G \) and \(A^* = A \cap G, A^{**} \) is nowhere dense, and \(A^{***} \) is of absolute measure 0.

Let \(H \) be the interior of the complement of \(G \). Then \(H \cap A^* \) is empty. So, \(H \cap A \) is the union of a nowhere dense set and a set of absolute measure zero. If \(H \neq \emptyset \), \(E \cap H \) is a \(c \)-dense \(F_\sigma \) subset of \(H \) since \(E \) is a \(c \)-dense \(F_\sigma \).
subset of I. So, by Lemma 8, $(E \cap H) \setminus A$ contains an F_σ set which is c-dense in H. Call this set F.

Now, on the complement of A we have

$$f_2(x) = f_1(x) + \frac{1}{2}.$$

On E, $b_1(x) = f_1(x)$. Since $F \subset E \setminus A$,

$$f_2(x) = b_1(x) + \frac{1}{2} \quad \text{on } F.$$

Let $b_2 = b_1 + \frac{1}{2} \chi_H$. Since H is open χ_H is Baire 1 so that b_2 is Baire one. Moreover, $\|b_2 - b_1\| \leq \frac{1}{2}$ where $\|\phi\|$ is the $\sup[|\phi(x)|: x \in I]$ for any function ϕ on I.

Finally, we note that $b_2(x) = f_2(x)$ on a c-dense set of type F_σ. First, F is an F_σ set which is c-dense in H and on F,

$$b_2(x) = b_1(x) + \frac{1}{2} = f_1(x) + \frac{1}{2} = f_2(x).$$

Next, on A^*,

$$b_2(x) = b_1(x) = f_1(x) = f_2(x).$$

But A^* is perfectly dense in G so that it contains an F_σ set K which is dense in G. Now, $b_2(x) = f_2(x)$ on $F \cup K$ which is a c-dense F_σ in $G \cup H$, a dense open set in I. Thus $b_2(x) = f_2(x)$ on a dense F_σ in I.

Proceeding by induction, obtain a sequence of Baire 1 functions $\{b_k\}$ such that

$$\|b_{k+1} - b_k\| < \frac{1}{2^k}$$

where $b_{k+1} = f_{k+1}$ on a c-dense F_σ.

We now modify $\{b_k\}$ to obtain $\{g_k\}$, a sequence of Baire one functions which converges uniformly to a Baire 1 function g such that $g(x) = f(x)$ on a c-dense F_σ.

For this purpose, let $\{I_k\}$ be an enumeration of the rational intervals in $[0, 1]$. For each k, choose $P_k \subset I_k$ so that

(a) P_k is perfect,

(b) $P_i \cap P_j = \emptyset$ if $i \neq j$,

(c) $b_k(x) = f_k(x)$ on P_k.

By Lemma 6, there is a perfect set $Q_k \subset P_k$ such that $f\mid Q_k$ is continuous.

Let

$$g_k(x) = \begin{cases} f(x) & \text{for } x \in Q_1 \cup Q_2 \cup \cdots \cup Q_k, \\ b_k(x) & \text{elsewhere}. \end{cases}$$

Since $Q_1 \cup \cdots \cup Q_k$ is closed, b_k is Baire 1, and $f\mid Q_1 \cup \cdots \cup Q_k$ is continuous, g_k is Baire 1. Now, $|b_{k+1}(x) - b_k(x)| < 1/2^k$ for every $x \in I$,

$g_k(x) = b_k(x)$ on $I \setminus (Q_1 \cup \cdots \cup Q_k)$ and $g_{k+1}(x) = b_{k+1}(x)$ on $I \setminus (Q_1 \cup \cdots \cup Q_k \cup Q_{k+1})$ and $g_k(x) = g_{k+1}(x) = f(x)$ on $Q_1 \cup \cdots \cup Q_k$. Hence

$$\sup[|g_{k+1}(x) - g_k(x)|: x \in I \setminus Q_{k+1}] < 1/2^k.$$
For $x \in Q_{k+1}$, $g_{k+1}(x) = f(x)$ and so

$$|g_k(x) - g_{k+1}(x)| = |g_k(x) - f(x)| = |b_k(x) - f(x)|$$

$$\leq |b_k(x) - b_{k+1}(x)| + |b_{k+1}(x) - f_{k+1}(x)| + |f_{k+1}(x) - f(x)|$$

$$\leq \frac{1}{2^k} + 0 + \frac{1}{2^k} = \frac{1}{2^{k-1}}$$

by (c) and (i). So $\|g_{k+1} - g_k\| < 1/2^{k+1}$.

Since each g_k is Baire 1 and the sequence $\{g_k\}$ converges uniformly, the limit g is also Baire 1 and is equal to f on $\bigcup_k Q_k$, a c-dense F_σ set. This proves the theorem.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SANTA BARBARA, CALIFORNIA 93106

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LEICESTER, LEICESTER, ENGLAND

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907