NECESSARY AND SUFFICIENT TYPE THEOREM FOR ABSOLUTE NÖRLUND SUMMABILITY OF CONJUGATE SERIES

ARUN KUMAR

Abstract. Sufficient conditions for $|N,p_n|$ summability of the conjugate series of Fourier series have been obtained earlier. The author obtains here a set of necessary and sufficient conditions for the result. This improves earlier results and provides a unified version of them.

1. Introduction and the main results. In the present paper we shall prove a result which is directly connected with an earlier paper due to Dikshit and Kumar [3]. Unless stated otherwise we shall use throughout this paper the same definitions and notations as used in [3]. We shall also use the following additional notations: $B_n(t)$ denotes the conjugate series of $A_n(t)$; $\psi(t) = \frac{1}{2} \{ f(x + t) - f(x - t) \}$; and ‘BV [a, b]’ represents the class of functions of bounded variation over [a, b].

Throughout $\lambda(t)$ will denote a positive nondecreasing function; for $n = 1, 2, 3, \ldots, \lambda(n) = \lambda_n$. Further, we write

$$J_n(\lambda_n) = \sum_{k = n}^{\infty} \left(\frac{P_n \lambda_k}{\lambda_n k P_k} \right).$$

Combining a result due to Bosanquet and Hyslop [1] with a subsequent result due to Mohanty [5], we have the following.

Theorem A. Suppose that

$$t^{\alpha} |\psi(t)| < \infty \text{ for } 0 < \alpha < 1.$$

Then $\sum_{n=1}^{\infty} n^\alpha B_n(x)$ is summable $|C, \alpha + \delta|$ for every $\delta > 0$ if

$$\int_0^\pi t^{-\alpha - 1} |\psi(t)| \, dt < \infty.$$

When $\alpha = 0$, then (1.2) is also a necessary condition for the $|C, \delta|$ summability of $\sum_{n=1}^{\infty} B_n(x)$ (see [1, Theorem 4]).

In view of the lemma [5, p. 66] the conditions

$$t^{-\alpha} \psi(t) \in BV[0, \pi]$$
and (1.2), for $0 < \alpha < 1$, are equivalent to the corresponding conditions used by Mohanty in [5, Theorem 2]. However, (1.1') is equivalent to (1.1) whenever (1.2) holds. For, if (1.1) holds, then (cf. [1, p. 495])
\[\int_0^\pi \left| t^{-\alpha} \psi(t) \right| dt \leq \int_0^\pi \left| t^{-\alpha} d\psi(t) \right| dt + \alpha \int_0^\pi \left| \psi(t) t^{-\alpha-1} \right| dt < \infty \]
and thus (1.1') is valid. Conversely, assuming (1.1'), we have
\[\int_0^\pi \left| t^{-\alpha} d\psi(t) \right| dt \leq \int_0^\pi \left| t^{-\alpha} \psi(t) \right| dt + \alpha \int_0^\pi \left| \psi(t) t^{-\alpha-1} \right| dt < \infty \]
and, therefore, (1.1) is valid.

The sufficiency part of Theorem A was generalised in the form of the following results (see [6], [2] respectively).

Theorem B. Suppose (1.1) and (1.2) hold with $\alpha = 0$, and let \(\{ p_n \} \) be a nonnegative nonincreasing sequence such that
\[\sum_{n=1}^\infty |\Delta R_n| < \infty \quad \text{and} \quad \sum_{n=1}^\infty |\Delta S_n| < \infty, \]
where \(R_n = (n+1)p_n/p_n \) and \(S_n = \sum_{k=1}^n p_k/kP_n \), then \(\sum_{n=1}^\infty B_n(x) \) is summable \(\|N, p_n\| \).

Theorem C. Let \(\{ p_n \} \) be such that \(p_n > 0, p_{n+1}/p_n < p_{n+2}/p_{n+1} \leq 1 \) for all \(n \). Then, for $0 < \alpha < 1$, \(\sum_{n=1}^\infty n^\alpha B_n(x) \) is summable \(\|N, p_n\| \), if (1.1), (1.2) hold, and \(J_n(n^\alpha) < K \).

Considering a class of functions \(\lambda(t) \), we shall show that a condition which in particular reduces to (1.2) of Theorem A, is a necessary condition for \(\|N, p_n\| \) summability of \(\sum_{n=1}^\infty \lambda_n B_n(x) \). As for the sufficiency part of the theorem, we obtain a sharper result which includes both Theorem B and Theorem C. We shall prove the following.

Theorem. Suppose that
\[(1.3) \quad \int_0^\pi \lambda(C/t)|d\psi(t)| dt < \infty, \quad \text{where } C \text{ is a number } > \pi; \]
and let \(\{ p_n \} \) be a nonnegative nonincreasing sequence such that
\[(1.4) \quad J_n(\lambda_n) < K, \quad n = 1, 2, \ldots, \]
then \(\sum_{n=1}^\infty \lambda_n B_n(x) \) is summable \(\|N, p_n\| \), if and only if,
\[(1.5) \quad \int_0^\pi \lambda(C/t)|\psi(t)|t^{-1} dt < \infty. \]

If we assume \(\psi(0) = 0 \), then \(\psi(t) = \int_0^t d\psi(u), \) so that by a change in order of integration we get for $\alpha > 0$,
\[\int_0^\pi t^{-\alpha-1}|\psi(t)| dt \leq \int_0^\pi t^{-\alpha-1} dt \int_0^t |d\psi(u)| < \frac{1}{\alpha} \int_0^\pi u^{-\alpha}|d\psi(u)|. \]
Thus, if \(\psi(0) = 0 \) and $\alpha > 0$, then (1.1) implies (1.2). However, it may be observed that (1.3) does not imply (1.5) even if \(\psi(0) = 0 \). For if we take
\(\lambda(u) = \log u \) and \(\psi(t) = (\log(C/t))^{-2} \), then (1.3) is true but (1.5) is not satisfied.

2. Preliminary results. We need the following lemmas for proof of the theorem. We introduce the following notations for convenience: \(\tau = [\pi/r] \); for each positive integer \(n \), \(P(n, k) = P_{n-k}/P_n - P_{n-k-1}/P_{n-1} \), where \(0 \leq k \leq n \), \(P(0, 0) = 1 \).

Lemma 1. Let \(\{p_n\} \) be a nonnegative nonincreasing sequence. Then (i) for all \(k \geq 0 \), \(\sum_{n=a}^{b} P(n, k) \leq 1 \), where \(1 \leq a \leq b < \infty \), and \(P(n, k) \geq 0 \);

(ii) \(\sum_{k=0}^{n} P(n, k) \geq 1/2 \) for all \(n > 0 \).

Proof. The result (i) of the lemma is contained in ([3, Lemma 3]). Writing \(P_n = \sum_{k=0}^{n} p_k \), we have

\[
\sum_{k=0}^{n} P(n, k) = \frac{P_n}{P_n} - \frac{P_{n-1}}{P_{n-1}} = 1 - \frac{P_{n-1}P_n}{P_{n-1}P_n}.
\]

In view of this equality, result (ii) is equivalent to

\[
(2.1) \quad p_n P_{n-1} < \frac{1}{2} P_{n-1} P_n,
\]

which we now prove by induction. The result (2.1) is trivially true for \(n = 1 \). Assuming that the result (2.1) is true for \(n \), we obtain the following by adding \(p_n P_n \) to both the sides of (2.1).

\[
(2.2) \quad p_n P_n < \frac{1}{2} P_n (P_n + p_n).
\]

Since \(p_{n+1} - p_n < 0 \) and \(P_n > \frac{1}{2} P_n \), we have

\[
(2.3) \quad (p_{n+1} - p_n)P_n < \frac{1}{2} P_n (p_{n+1} - p_n).
\]

Adding (2.2) and (2.3), we see that (2.1) holds with \(n \) replaced by \((n + 1) \). Hence the result.

Lemma 2. If \(\{p_n\} \) be nonnegative nonincreasing and (1.4) holds, then (i) \(\lambda_{2n} < K\lambda_n \), (ii) for \(0 < k < n \), \(k\lambda_n \leq K\lambda_k \) and (iii) \(\sum_{k=1}^{\infty} (P_n - P_{n-k})/k \leq K P_n \).

Proof. It is clear that (ii) includes (i) which is contained in [3, Lemma 4]. We, therefore, consider (ii). Since the nonnegative nonincreasing nature of \(\{p_n\} \) implies that \(\{P_n/n\} \) is nonincreasing, we have from (1.4)

\[
\frac{K\lambda_k}{k} > \sum_{r=k}^{\infty} \frac{\lambda_r}{r^2} > \sum_{r=n}^{\infty} \frac{\lambda_r}{r^2} > \lambda_n \sum_{r=n}^{\infty} \frac{1}{r^2},
\]

since \(\{\lambda_n\} \) is nondecreasing. Thus, (ii) follows.

In order to prove (iii) we first observe that \(S_n < K \) is equivalent to \(J_n(1) < K \) (see [4, Lemma 4]) which is a direct consequence of (1.4). The result now follows when we observe that for nonnegative nonincreasing sequence \(\{p_n\} \), \(P_n - P_{n-k} < P_k \).
Lemma 3. If \(\{ p_n \} \) be nonnegative nonincreasing, and \((1.4) \) holds, then uniformly for \(0 < t < \pi \)
\[
\sum_{n=2}^{\infty} \left| \sum_{k=\tau+1}^{n} p(n, k) k^{-1} \lambda_k \exp(ikt) \right| \leq K\lambda(C/t),
\]
where \(\tau = [\pi/t] \).

The result of Lemma 3 follows from the proof of the result \(\Sigma^* \leq K\lambda(C/t) \), as given in ([3, Proof of Theorem 1, (4.6)]).

Lemma 4. Suppose that \((1.3) \) holds, and let for \(n > 1 \), \(E_n = \{ t : |\psi(t)| \) is continuous at \(t \in [\pi/n, \pi/(n-1)] \} \). Then there exist points \(\theta_n \) and \(\theta'_n \) in \(E_n \) such that, for all \(x \in E_n \),
\[
(2.4) \quad |\psi(\theta_n)| - 1/n < |\psi(x)| < |\psi(\theta'_n)| + 1/n.
\]
Further, (i) if \((1.4) \) holds and \(\{ p_n \} \) is nonnegative nonincreasing, then \((1.5) \) implies \(\Sigma_{n=2}^{\infty} \lambda_n |\psi(\theta_n)/n < \infty \), and \(\Sigma_{n=2}^{\infty} \lambda_n |\psi(\theta'_n)/n < \infty \) implies \((1.5) \); and (ii) \(\Sigma_{n=2}^{\infty} \lambda_n |\Delta \psi(\theta_n)| < \infty \).

Proof. It is clear that \((1.3) \) implies that \(\psi(t) \in BV[0, \pi] \) so that \(|\psi(t)| \in BV[0, \pi] \) and thus \((2.4) \) follows directly. Further, since \(|\psi(t)| \) possesses at most countable number of ordinary discontinuities, we have by the result (i) of Lemma 2
\[
\frac{|\psi(\theta_n)| \lambda_n}{n} \leq K \int_{E_n} \left(|\psi(t)| + 1/n \right) \frac{\lambda(\pi/t)}{t} \, dt,
\]
which gives that
\[
\sum_{n=2}^{\infty} \frac{|\psi(\theta_n)| \lambda_n}{n} \leq K \int_{0}^{\pi} \frac{|\psi(t)| \lambda(\pi/t)}{t} \, dt + K \sum_{n=2}^{\infty} \frac{\lambda_n}{n^2}.
\]
Applying the condition \((1.4) \) along with the fact that \(\{ P_n/n \} \) is nonincreasing, we obtain the first result in (i). The second one can be obtained similarly.

In order to prove (ii), we apply result (i) of Lemma 2 so that
\[
\lambda_n |\Delta \psi(\theta_n)| \leq K\lambda_{n-1} \left| \int_{\theta_n}^{\theta_{n+1}} d\psi(t) \right| \leq K \int_{\theta_n}^{\theta_{n+1}} \lambda(C/t) |d\psi(t)|,
\]
since \(\lambda(t) \) is nondecreasing. This proves (ii).

3. Proof of the Theorem. We have
\[
B_k(x) = \frac{2}{\pi} \int_{0}^{\pi} \psi(t) \sin kt \, dt.
\]
We first integrate by parts and then break the range of integration in \((0, \theta_n) \) and \((\theta_n, \pi) \) where \(\theta \)'s are the points introduced in Lemma 4. Thus, we have
\[\frac{k \pi}{2} B_k(x) = - \int_0^\pi \left(1 - \cos kt \right) d\psi(t) \]

\[= - \int_0^{\theta_n} \left(1 - \cos kt \right) d\psi(t) - \int_0^\pi d\psi(t) + \int_0^\pi \cos kt \ d\psi(t) \]

\[= - 2 \int_0^{\theta_n} \sin^2 \left(\frac{kt}{2} \right) d\psi(t) + \psi(\theta_n) + \int_0^\pi \cos kt \ d\psi(t). \]

Writing \(V_n(a) = t_n - t_{n-1} \), where \(t_n \)'s are \((N, p_n) \) means of \(a = \sum_{n=1}^\infty \lambda_n B_n(x) \), we have

\[-\Sigma_1 + \Sigma_2 - \Sigma_3 < \frac{\pi}{2} \sum_{n=2}^\infty |V_n(a)| < \Sigma_1 + \Sigma_2 + \Sigma_3, \]

where

\[\Sigma_1 = 2 \sum_{n=2}^\infty \left| \int_0^{\theta_n} \left\{ \sum_{k=1}^n \frac{P(n, k)\lambda_k \sin^2(kt/2)}{k} \right\} d\psi(t) \right|, \]

\[\Sigma_2 = \sum_{n=2}^\infty \left| \psi(\theta_n) \right| \sum_{k=1}^n \frac{P(n, k)\lambda_k}{k}, \]

\[\Sigma_3 = \sum_{n=2}^\infty \left| \int_{\theta_n}^\pi \left\{ \sum_{k=1}^n \frac{P(n, k)\lambda_k \cos kt}{k} \right\} d\psi(t) \right|. \]

We first show that \(\Sigma_1 \) and \(\Sigma_3 \) are bounded. Since for the integral in \(\Sigma_1 \), \(t < \theta_n < \pi/(n-1) \), we have

\[\Sigma_1 < 2 \int_0^\pi \left| d\psi(t) \right| \left(\sum_{n=2}^{\tau+1} \sum_{k=1}^n \frac{P(n, k)\sin^2(kt/2)\lambda_k}{k} \right). \]

Observing that \(|\sin nt| < nt \), and applying results (i) of Lemma 1, Lemma 2, we have

\[\sum_{n=2}^{\tau+1} \sum_{k=1}^n \frac{P(n, k)\sin^2(kt/2)\lambda_k}{k} \]

\[\leq t^2 \sum_{k=1}^{\tau+1} k\lambda_k \sum_{n=k}^{\tau+1} P(n, k) < K\lambda_{\tau+1} < K\lambda(C/t). \]

Hence, by virtue of the hypothesis (1.3),

\[(3.2) \Sigma_1 < \infty. \]

Now, we consider \(\Sigma_3 \). We write

\[g_n(t) = \sum_{k=1}^n P(n, k)\lambda_k k^{-1} \cos kt \quad \text{for} \ \theta_n < t < \pi, \]

otherwise zero. We have

\[\Sigma_3 < \sum_{n=2}^\infty \int_0^\theta \left| g_n(t) \right| \left| d\psi(t) \right|. \]
In order to prove that $\Sigma_3 < \infty$, we first demonstrate that
\[
\Sigma' = \sum_{n=\tau}^{\infty} \left| \sum_{k=1}^{n} P(n, k) \lambda_k k^{-1} \exp(ikt) \right| \leq K\lambda(C/t),
\]
uniformly in $0 < t < \pi$.

Breaking the range of summations suitably and observing that $|\exp(ikt)| = 1$, we have
\[
\Sigma' \leq \sum_{n=\tau}^{\infty} \sum_{k=1}^{\tau} P(n, k) \lambda_k / k + \sum_{n=\tau+1}^{2\tau+1} \sum_{k=\tau+1}^{n} P(n, k) \lambda_k / k
\]
\[+ \sum_{n=2\tau+2}^{\infty} \left| \sum_{k=\tau+1}^{n} P(n, k) \lambda_k k^{-1} \exp(ikt) \right|.
\]

Using result (i) of Lemma 1, Lemma 2, together with the fact that $\{\lambda_n\}$ is nondecreasing, and Lemma 3, we have
\[
\Sigma' \leq \sum_{k=1}^{\tau} \lambda_k / k \left(1 - \frac{P_{\tau-k-1}}{P_{\tau-1}} \right) + \sum_{k=\tau+1}^{2\tau+1} \frac{\lambda_k}{k} \sum_{n=k}^{2\tau+1} P(n, k) + K\lambda(C/t)
\]
\[\leq K\lambda(C/t) + K\lambda(C/t) \leq K\lambda(C/t).
\]

This result, by virtue of the hypothesis (1.3) and the fact that $\gamma_n(t) = 0$ when $n < \tau$, yields that
\[
(3.3) \quad \Sigma_3 < \infty.
\]

Evidently,
\[
(3.4) \quad |V_1(a)| = P(1, 1)|B_1(x)| < \infty.
\]

In view of (3.1), (3.2), (3.3) and (3.4) it is enough for proving the theorem to show that $\Sigma_2 < \infty$, if and only if (1.5) holds. In order to establish the sufficiency part of the theorem, we first observe that $\psi(t) \to 0$ as $t \to 0$. For if $\psi(t) \to l \neq 0$, then in view of the fact that the positive nondecreasing property of $\lambda(t)$ implies the existence of a positive constant a such that $\lambda(C/t) > a$ in some right hand neighbourhood of the origin, it follows that (1.5) is contradicted. Now effecting suitable changes in order of summations and applying Abel’s transformation, we get
\[
\Sigma_2 = \sum_{k=2}^{\infty} \frac{\lambda_k}{k} \sum_{n=k}^{\infty} |\psi(\theta_n)| P(n, k) + O(1)
\]
\[= \sum_{k=2}^{\infty} \frac{\lambda_k}{k} \sum_{n=k}^{\infty} \Delta|\psi(\theta_n)| \frac{P_{n-k}}{P_n} + O(1)
\]
\[= \sum_{k=2}^{\infty} \frac{\lambda_k}{k} \sum_{n=k}^{\infty} \Delta|\psi(\theta_n)| - \sum_{k=2}^{\infty} \frac{\lambda_k}{k} \sum_{n=k}^{\infty} \frac{P_n - P_{n-k}}{P_n} \Delta|\psi(\theta_n)| + O(1)
\]
\[= \sum_{k=2}^{\infty} \frac{\lambda_k}{k} |\psi(\theta_k)| - \sum_{n=2}^{\infty} \Delta|\psi(\theta_n)| \sum_{k=2}^{n} \frac{(P_n - P_{n-k})\lambda_k}{kP_n} + O(1) < \infty,
\]
by result (iii) of Lemma 2, Lemma 4 and the fact that \((\lambda_n) \) is nondecreasing. This completes the proof of the sufficiency part of the theorem.

Next, by the results (ii) of Lemmas 1 and 2, we have

\[
\sum_2 > K \sum_{n=2}^{\infty} \frac{\psi(\theta_n) |\lambda_n|}{n}
\]

\[
> -K \sum_{n=2}^{\infty} \|\psi(\theta_n)\| - \|\psi(\theta'_n)\| \frac{\lambda_n}{n} + K \sum_{n=1}^{\infty} \frac{\psi(\theta'_n) |\lambda_n|}{n}.
\]

Since by result (ii) of Lemma 2, \(\lambda_n/n \leq K \), the first term on the right hand side is bounded by virtue of the fact that \(|\psi(t)| \in BV[0, \pi] \), which is a consequence of (1.3). Now the necessity part of the theorem follows when we use result (i) of Lemma 4.

This completes the proof of the theorem.

My grateful thanks are due to Dr. H. P. Dikshit for some valuable suggestions and discussions. The author would also like to express his grateful thanks to the referee for some valuable suggestions with respect to the presentation of the paper.

References

Department of Mathematics, University of Jabalpur, Jabalpur, India