A BOUNDARY VALUE PROBLEM FOR $H^\infty(D)$

ROTRAUT GOUBAU CAHILL

Abstract. Let $W = \bigcup_{n=1}^{\infty} W_n$ be an F_σ subset of the unit circle of measure 0 and let $(q_n), n > 1$, be a decreasing sequence with $q_1 < 1$ and $\lim_n q_n = 0$. There exists an H in $H^\infty(D)$ of norm q_1 whose modulus has radial limit along every radius which has radial limit of modulus q_1 on W_1 and q_{n+1} on $W_{n+1} \setminus \bigcup_{k=1}^{n} W_k$. If W is simultaneously a G_σ set, H may be chosen to have no zeros on C. It follows that for W countable, say $W = \{e^{i\theta_n}\}, n > 1$, there is such an H of norm 1 for which $\lim_{r \to 1} H(re^{i\theta_n}) = 1/n$. The proof of the theorem depends on the existence of a special collection of closed sets $(S_\lambda), \lambda > 1$, real, for which the function h, defined by $h(x) = a_n + (\inf\{A|x \in S\}) - n(a_{n+1} - a_n), a_n = -\ln q_n$, is such that the function $H(w) = \exp(-1/2\pi) \int [(w + e^{i\theta})/(e^{i\theta} - w)]h(u) \, du$ has the required properties. Some of the techniques used are similar to those developed in an earlier paper [1].

Notation. Let I be a fixed interval on the real line. For each Lebesgue measurable subset E of I, $|E|$ denotes its Lebesgue measure. E' denotes the complement of E in I.

The letters k, m, n and s when they occur as symbols denote natural numbers. C denotes the unit circle and D the unit disc.

Purpose. The aim of this work is to prove the following theorem.

Theorem. Let $W = \bigcup_{n=1}^{\infty} W_n$ be an F_σ subset of the unit circle of measure 0 and let $(q_n), n > 1$ be a strictly decreasing sequence with $q_1 < 1$ and $\lim_n q_n = 0$. There exists a function H in $H^\infty(D)$ of norm q_1 whose modulus has radial limit along every radius which has radial limit of modulus q_1 on W_1 and q_{n+1} on $W_{n+1} \setminus \bigcup_{k=1}^{n} W_k$. If W is simultaneously a G_σ set, then H may be chosen to have no zeros on C.

An immediate corollary of the theorem is that for W countable, say $W = \{e^{i\theta_n}\}, n > 1$, there is such an H of norm 1 for which $\lim_{r \to 1} H(re^{i\theta_n}) = 1/n$.

Preliminary lemmas. Three lemmas precede the proof of the theorem. In addition, frequent reference is made to a lemma of Lusin-Menchoff. For convenience this lemma is stated first.

LUSIN-MENCHOFF LEMMA. Let M_1 be an arbitrary nonempty measurable subset of $(0, 1).$ Let M_2 be a closed subset of M_1 consisting only of points of
density of M_1. Then for every positive number p there exists a closed set M_p with $M_2 \subset M_p \subset M_1$ satisfying:

1. Every point of M_2 is a point of density of M_p and every point of M_p is a point of density of M_1.
2. $|M_p| > |M_2| + (1 - 2^{-2-p})(|M_1| - |M_2|)$.
3. If $x \in M_2$ and $|M_1 \cap (x, x + t)|/|t| > 1 - \varepsilon$ for $|t| < 1/m$, then $|M_p \cap (x, x + t)|/|t| > 1 - \varepsilon - 2^{-m-p+1}$, in particular, if $|M_1 \cap (0, 1)| = 0$, $|M_p \cap (x, x + t)|/|t| > 1 - 2^{-m-p+1}$ for $|t| < 1/m$.

A proof of this lemma may be found in [2]. It is clear that the interval $(0, 1)$ can be replaced by an arbitrary open interval (a, b). The interval may also be closed or half-open provided suitable one-sided restrictions are imposed in (1) and (3) at included endpoints. In the lemmas that follow such restrictions are assumed without explicit mention.

Lemma 1. Let $W = \bigcup_{n=1}^{\infty} W_n$, W_n closed, be an F_α set of measure 0 contained in $[a, b]$. There exists an increasing sequence of closed sets $\{S_n\}_{n \geq 1}$ for which

1. $|S_n| > L(1 - 1/2^n)$ for all n, where $L = b - a$.
2. $W_1 \subset S_1$ and $W_n \cup \bigcup_{k=1}^{n-1} W_k \subset S_n \setminus S_{n-1}$ for $n > 1$.
3. For each $w \in W_n \setminus \bigcup_{k=1}^{n-1} W_k$, $n > 1$, there exists a $T_w > 0$ such that $|S_n \cap (w, w + t)| = 0$ for all t with $|t| < T_w$.
4. For each n there exists a constant $P_n > n$ such that $|S_{n+1} \cap (x, x + t)|/|t| > 1 - 2^{-m-P_n+1}$ whenever $x \in S_n$ and $|t| < 1/m$.

If W is simultaneously a G_δ set, then the S_n may be chosen so that, in addition, $\bigcup_n S_n = [a, b]$.

Proof. Set $L = b - a$. If W is also a G_δ set, then W' is an F_α set and may be written as $W' = \bigcup_{n=1}^{\infty} F_n$, F_n closed.

Let P_1 be an arbitrary closed subset of W' with $|P_1| > L(1 - \frac{1}{2})$ and set $S_1 = P_1 \cup W_1$. If W is a G_δ set, set $S_1 = P_1 \cup W_1 \cup F_1$. Let p_1 be a number greater than 1 for which $|S_1| + (1 - 2^{-2-p_1})(L - |S_1|) > L(1 - 1/2^2)$.

Since S_1 is a subset of $W' \cup W_1$, there exists a closed set P_2 with $S_1 \subset P_2 \subset W' \cup W_1$ satisfying properties (1)–(3) of the Lusin-Menchoff Lemma with $M_1 = W' \cup W_1$, $M_2 = S_1$ and $p = p_1$.

Set $S_2 = P_2 \cup W_2 \setminus W_1$. Since W_1 is a subset of S_1 and hence, of P_2, $S_2 = P_2 \cup W_2$, which is closed. If W is also a G_δ set, set $S_2 = P_2 \cup F_2 \cup W_2 \setminus W_1$.

Continue defining sets S_n, $n > 2$, inductively as follows. Let p_{n-1} be a number greater than $n - 1$ for which $|S_{n-1}| + (1 - 2^{-2-p_{n-1}})(L - |S_{n-1}|) > L(1 - 1/2^n)$.

By the Lusin-Menchoff Lemma, there is a closed set P_n with $S_{n-1} \subset P_n \subset W' \cup \bigcup_{k=1}^{n-1} W_k$ satisfying (1)–(3) with $M_1 = W' \cup \bigcup_{k=1}^{n-1} W_k$, $M_2 = S_{n-1}$ and $p = p_{n-1}$. Set $S_n = P_n \cup W_n \cup \bigcup_{k=1}^{n-1} W_k$. If W is a G_δ set, set $S_n = P_n \cup F_n \cup W_n \cup \bigcup_{k=1}^{n-1} W_k$. The sequence $\{S_n\}$, $n \geq 1$, has all the required properties.
Property (b) follows immediately from the construction of the \(S_n \). Property (a) holds since \(|S_n| > |S_{n-1}| + (1 - 2^{-2^{-n-1}})(L - |S_{n-1}|), n > 1\), by (2) of the Lusin-Menchoff Lemma, and the right side of the inequality is greater than \(L(1 - 1/2^n)\) by choice of \(p_n \). If \(w \in W_n \setminus \bigcup_{k=1}^{n-1} W_k \), \(n > 1\), then \(w \) is not in the closed set \(P_n \) (or in \(P_n \cup F_n \)) since \(P_n \subset W' \cup \bigcup_{k=1}^{n-1} W_k \). Let \(T_w \) be the distance from \(w \) to \(P_n \) (or to \(P_n \cup F_n \)). Then for \(|t| < T_w \), \(|S_n \cap (w, w + t)| = |W_n \setminus \bigcup_{k=1}^{n-1} W_k \cap (w, w + t)| = 0 \). Thus (c) holds. Finally, if \(W' = \bigcup_{n=1}^{\infty} F_n \), \(F_n \) closed, \(S_n \) is chosen so that \(F_n \subset S_n \). Consequently, \(\bigcup_n S_n \) contains both \(W \) and \(W' \) and must equal \([a, b]\). Q.E.D.

It should be noted that an additional restriction may be imposed on the \(p_k \), which will be used later. If \(\{a_k\}, k > 1\), is a strictly increasing sequence of nonnegative numbers diverging to \(\infty \), the \(p_k \) may be chosen so that \(\sum_{k=3}^{\infty} a_k 2^{-k-2} < \infty \). Choose, for example, each \(p_{k-2} \) large enough so that \(a_k 2^{-k-2} < 1/2^k \).

An increasing sequence of closed sets \(S_n \) having properties (a)-(d) of Lemma 1 will be referred to as a modified Zahorski sequence for \(W \) on \([a, b]\).

For each \(N \) and \(m/2^n \) with \(0 < m < 2^n \), it is possible, by repeated use of the Lusin-Menchoff Lemma to insert a closed set \(S_{N+m/2^n} \) between \(S_N \) and \(S_{N+1} \setminus \bigcup_{k=1}^{n-1} W_k \) in such a way that a set with smaller subscript is contained in and consists only of points of density of a set with larger subscript. These sets may be chosen so that, in addition, \(|S_{N+1/2^n} \cap (x, x + t)|/|t| > L(1 - 2^{-m+1}) \) for \(x \in S_N \) whenever \(|t| < 1/m \). Details for a similar situation may be found in [1, p. 166]. The essential difference in the present work is that the sets \(S_{N+m/2^n}, m < 2^n \), are all contained in \(S_{N+1} \setminus \bigcup_{k=1}^{n-1} W_k \). Consequently, \(W_{n+1} \setminus \bigcup_{k=1}^{n-1} W_k \subset S_{N+1} \setminus S_{N+m/2^n} \) for each \(N \) and all \(m < 2^n \).

As in [1] for each \(\lambda > 1 \), let \(S_\lambda = \bigcap_{N+m/2^n > \lambda} S_{N+m/2^n} \).

This collection of sets \(\{S_\lambda\}_{\lambda>1} \) will be referred to as a modified Zahorski collection for \(W \) on \([a, b]\).

Lemma 2. Let \(W = \bigcup_{n=1}^{\infty} W_n \) be an \(F_a \) set of measure 0 contained in the interval \([a, b]\) and let \(\{a_n\}, n > 1 \), be a strictly increasing sequence of nonnegative numbers diverging to \(\infty \). Let \(\{S_\lambda\}_{\lambda>1} \) be a modified Zahorski collection for \(W \) on \([a, b]\) where the \(p_k \) are chosen so that \(\sum_{k=3}^{\infty} a_k 2^{-k-2} < \infty \).

For each \(x > 1 \), let \(f(x) = a_n + (x - n)(a_{n+1} - a_n) \), where \(n \) is the unique positive integer for which \(n \leq x < n + 1 \). For each \(x \in [a, b] \) let

\[
h(x) = \begin{cases}
\inf_{\lambda>1} \{\lambda \mid x \in S_\lambda\}, & x \in \bigcup_\lambda S_\lambda, \\
\infty, & x \notin \bigcup_\lambda S_\lambda.
\end{cases}
\]

Define the function \(g \) on \([a, b]\) by
(If \(W \) is also a \(G_\delta \) set, \(\bigcup_\lambda S_\lambda \) may be the entire interval \([a, b]\), in which case the second part of the definition is superfluous.) The function \(g \) has these properties.

(a) \(g \) is bounded below by \(a_1 \) and is identically \(a_1 \) on \(S_1 \).
(b) \(g(w) = a_{N+1} \) for each \(w \in W_{N+1} \setminus \bigcup_{k=1}^N W_k \).
(c) \(g \) is upper-semicontinuous at each \(x \in \bigcup_\lambda S_\lambda \) and \(\lim_{u \to x} g(u) = \infty \) for each \(x \notin \bigcup_\lambda S_\lambda \).

\[
\begin{align*}
g(x) &= \begin{cases}
f(h(x)) & \text{if } x \in \bigcup_\lambda S_\lambda, \\
\infty & \text{if } x \notin \bigcup_\lambda S_\lambda.
\end{cases}
\end{align*}
\]

Proof. (a) and (b) follow immediately since \(W_1 \subset S_1 \) and \(W_{N+1} \setminus \bigcup_{k=1}^N W_k \subset S_{N+1} \setminus S_{N+m/2} \) for each \(N \) and \(m < 2^n \).

The function \(g \) is upper-semicontinuous at each \(x \) for which \(g(x) = a_1 \) since \(g \) is bounded below by \(a_1 \). Suppose that \(g(x) > a_1 \) and finite. Then \(h(x) > 1 \). Let \(\epsilon > 0 \) be arbitrary and let \(\delta > 0 \) be such that \(h(x) - \delta > 1 \) and \(f(h(x) - \delta) > f(h(x)) - \epsilon \). Since \(h(x) = \inf_{\lambda>1}(\lambda|x \in S_\lambda) \), \(x \notin S_{h(x)-\delta} \). Let \(t > 0 \) be such that \((x - t, x + t) \cap S_{h(x)-\delta} \) is empty. Such a \(t \) exists since \(S_{h(x)-\delta} \) is closed. For \(u \in (x - t, x + t) \), \(h(u) > h(x) - \delta \) and \(g(u) > f(h(x) - \delta) > f(h(x)) - \epsilon = g(x) - \epsilon \). Thus \(g \) is upper-semicontinuous at \(x \). If \(x \notin \bigcup_\lambda S_\lambda \), then \(h(u) > n \) and \(g(u) > a_n \) for \(u \in (x - t, x + t) \), \(t = \text{dis}(x_1, S_n) \). Thus \(\lim_{u \to x} g(u) = \infty \). Therefore (c) holds.

It remains to verify (d)—a crucial property of \(g \) for future applications. (d) follows immediately from (c) if \(x \notin \bigcup_{\lambda>1} S_\lambda \). Let \(x \in \bigcup_{\lambda>1} S_\lambda \) and let \(n \) be the smallest positive integer for which \(x \in S_n \). For every \(0 < \epsilon < (n + 1) - h(x) \) and any \(t \),

\[
\left| \frac{1}{t} \int_x^{x+t} g(u) - g(x) \, du \right| < \left| \frac{1}{t} \int_{S_{h(x)}+\epsilon \cap (x,x+t)} g(u) - g(x) \, du \right|
\]

\[
+ \left| \frac{1}{t} \int_{S^n+\epsilon \cap (x,x+t)} g(u) - g(x) \, du \right|
\]

\[
+ \sum_{k=n+2}^\infty \frac{1}{|t|} \int_{S_k \setminus S_{k-1}} g(u) - g(x) \, du.
\]

Since \(h(u) < k \) for \(u \in S_k \setminus S_{k-1} \), \(g(u) < a_k \) for \(u \in S_k \setminus S_{k-1} \). Consequently,
A BOUNDARY VALUE PROBLEM FOR $H^\infty(D)$

$$\sum_{k=n+2}^{\infty} \frac{1}{|t|} \int_{S_k \setminus S_{k-1} \cap (x, x + t)} g(u) - g(x) \, du$$

$$\leq \sum_{k=n+2}^{\infty} (a_k - g(x)) \frac{|S_k \setminus S_{k-1} \cap (x, x + t)|}{|t|}.$$

It follows from property (d) of Lemma 1 and from the fact that x is in S_{k-2} for $k > n + 2$, that the right side of this inequality is dominated by

$$\sum_{k=n+2}^{\infty} (a_k - g(x)) \frac{|t|^{-p_k - m + 1}}{|t|} = 2^{-m+1} \sum_{k=n+2}^{\infty} (a_k - g(x))2^{-p_k - 2}$$

when $|t| < 1/m$. This sum approaches 0 as $m \to \infty$ since p_{k-2} and $\sum_{k=n+2}^{\infty} a_k 2^{-p_k - 2} < \infty$.

$$\left| \frac{1}{t} \int_{S_{n+1} \setminus S_{h(x)} + \epsilon \cap (x, x + t)} \ g(u) - g(x) \, du \right|$$

also approaches 0 as $t \to 0$ since this expression is less than or equal to

$$(a_{n+1} - g(x))|S_{n+1} \setminus S_{h(x)} + \epsilon \cap (x, x + t)|/|t|$$

and x is a point of density of both S_{n+1} and $S_{h(x)} + \epsilon$. ($x \in S_{h(x)} + \epsilon/2$ implies that x is a point of density of $S_{h(x)} + \epsilon$).

Finally, consider

$$\left| \frac{1}{t} \int_{S_{h(x)} + \epsilon \cap (x, x + t)} g(u) - g(x) \, du \right|.$$

Let $|t|$ be small enough so that $g(u) \geq g(x) - \epsilon$ for $u \in (x - t, x + t)$. Then,

$$(g(x) - \epsilon) \frac{S_{h(x)} + \epsilon \cap (x, x + t)}{|t|} < \frac{1}{|t|} \int_{S_{h(x)}} g(u) \, du$$

$$< f(h(x) + \epsilon)|S_{h(x)} + \epsilon \cap (x, x + t)|/|t|.$$

Consequently,

$$\lim_{t \to 0} \frac{1}{t} \int_{S_{h(x)} + \epsilon \cap (x, x + t)} g(u) - g(x) \, du < \max\{\epsilon, f(h(x) + \epsilon) - g(x)\}.$$

Summarizing, we have

$$\lim_{t \to 0} \frac{1}{t} \int_{x + t}^{x + t} g(u) - g(x) \, du < \max\{\epsilon, f(h(x) + \epsilon) - g(x)\}.$$

Since ϵ was arbitrary and f is continuous at $h(x)$, this limit must be 0.

This completes the proof of Lemma 2. Q.E.D.

Lemma 3. Let $W = \bigcup_{n=1}^{\infty} W_n$ be an F_σ set of measure 0 contained in the open interval (a, b). Let $(a_n)_{n=1}^{\infty}$ be a strictly increasing sequence of nonnegative numbers diverging to ∞. Let $(S_k)_{k \geq 1}$ be a modified Zahorski collection for W on $[a, b]$ where the P_k are chosen so that $\sum_{k=3}^{\infty} a_k 2^{-p_k - 2} < \infty$. If f, h and g are defined as in Lemma 2,
\[\left| \int_0^R \left(\frac{1}{t^2} \right) \left\{ J \left((w, w + t) \right) - J \left((w - t, w) \right) \right\} dt \right| \]

is finite for every \(w \in W \) and positive number \(R \) less than \(\min(b - w, w - a) \). Here \(J \left((w, w + t) \right) = \int_{(w, w + t)} g(u) \, du \) and \(J \left((w - t, w) \right) = \int_{(w - t, w)} g(u) \, du \).

Proof. The crucial observation here is that for each \(w \in W \setminus \bigcup_{k=0}^{n-1} W_k \), \(n > 1 \), there exists a \(T_w > 0 \) such that \(|S_n \cap (w, w + t)| = 0 \) for all \(t \) with \(|t| < T_w \). This is just (c) of Lemma 1. Consequently, \(n < h(u) < n + 1/2^k \) for almost all \(u \) in the set \(S_{n+1/2^k} (w - t, w + t) \) and \(a_n < g(u) < a_n + (a_{n+1} - a_n)/2^k \) for almost all \(u \) in this set. Apart from the critical role played by this observation, the structure of the proof is very similar to that of Lemma 3 in [1]. Consequently, some details are omitted.

Fix \(R \) and \(w \). For each measurable subset \(M \) of \((0, R)\) define \(J(M) = \int_M g(u) \, du \), \(M(t, +) = M \cap (w, w + t) \), \(M(t, -) = M \cap (w - t, w) \) and \(M_k = S_{k} \setminus S_{k-1} \).

If \(w \in W_1 \), then \(w \in S_1 \) and the result follows from Lemma 3 in [1]. Suppose that \(w \notin W_1 \) and let \(n \) be such that \(w \in W_n \setminus \bigcup_{k=0}^{n-1} W_k \). Set

\[*= \int_0^R \left(\frac{1}{t^2} \right) \left\{ J \left((w, w + t) \right) - J \left((w - t, w) \right) \right\} dt, \]

\[A = \int_0^R \left(\frac{1}{t^2} \right) \left\{ \sum_{k=n+2}^{\infty} J(M_k(t, +)) - J(M_k(t, -)) \right\} dt, \]

\[B = \int_0^R \left(\frac{1}{t^2} \right) \left\{ J(S_{n+1}(t, +)) - J(S_{n+1}(t, -)) \right\} dt. \]

Note that \(* = A + B \). Consider \(A \) first. For \(u \in S_k \), \(h(u) < k \) and \(g(u) < a_k \). Thus

\[|A| < \int_0^R \left(\frac{1}{t^2} \right) \left\{ \sum_{k=n+2}^{\infty} a_k (|M_k(t, +)|) + |M_k(t, -)| \right\} dt. \]

Using (d) of Lemma 1, it can be shown that

\[|A| \leq 4 \sum_{k=n+2}^{\infty} a_k 2^{-p_{k-2}} \int_0^R \left(\frac{-1/2^{\sqrt{2}}}{} \right) dt, \]

which converges since \(\sum_{k \geq 3} a_k 2^{-p_{k-2}} < \infty \).

Now consider \(B \). To show that \(|B| \) is finite, it suffices to show that the integral converges with \(R \) replaced by \(T_w \), where \(T_w > 0 \) is such that \(|S_n \cap (w, w + t)| = 0 \) for \(|t| < T_w \). Fix \(0 < t < T_w \) and let \(k \) be the positive integer for which \(1/2^{k+1} < t^2 < 1/2^k \). Set \(M(t) = (1/t^2) \{ J(S_{n+1}(t, +)) - J(S_{n+1}(t, -)) \} \) and set \(B_s = S_{n+1/t^2} \setminus S_{n+(t-1)/2^s} \), \(s > 1 \). Then
From the observation at the beginning of the proof, it follows that
\[J(S_{n+1/2t}(t, +)) - J(S_{n+1/2t}(t, -)) \leq a_n + 2^{-k}(a_{n+1} - a_n)|S_{n+1/2t}(t, +)| - a_n|S_{n+1/2t}(t, -)|. \]
The right side of this inequality is in turn dominated by
\[2^{-k}(a_{n+1} - a_n)|S_{n+1/2t}(t, -)| + (a_n + 2^{-k}(a_{n+1} - a_n))(|S_{n+1/2t}(t, +)| - |S_{n+1/2t}(t, -)|). \]
The remaining details are essentially the same as those in the proof of Lemma 3 in [1, p. 172]. Q.E.D.

Proof of theorem. If \(e^{ix} \not\in W \), replace \(W_1 \) by \(W_1 \cup \{ e^{ix} \} \). Let \(W_n^* = \{ x \in [-\pi, \pi] \mid e^{ix} \in W_n \} \), and set \(W^* = \bigcup_{n=1}^{\infty} W_n^* \). Set \(a_n = -\ln q_n \). Let \(\{ S_\lambda \}_{\lambda > 1} \) be a modified Zahorski collection for \(W^* \) on \([-\pi, \pi] \) with the \(p_k \) so chosen that \(\sum_{k=3}^{\infty} a_k 2^{-k-1} < \infty \).

If \(W \) is also a \(G_\delta \) set, let \(\{ S_\lambda \}_{\lambda > 1} \) be such that \(\bigcup_{\lambda>1} S_\lambda = [-\pi, \pi] \). Finally, let \(g \) be the function defined in Lemma 1 and extended periodically to a function on \(C \). Define
\[H(w) = \exp\left(\frac{-1}{2\pi} \int_{-\pi}^\pi e^{iu + w} g(u) du, \quad w \in D. \right. \]

Since
\[\lim_{t \to 0} \frac{1}{t} \int_x^{x+t} g(u) du = \begin{cases} g(x), & x \in \bigcup_{\lambda > 1} S_\lambda, \\
\infty, & x \not\in \bigcup_{\lambda > 1} S_\lambda, \end{cases} \]
\[\lim_{r \to 1} |H(re^{ix})| = \exp(-g(x)) \quad \text{for all } x \in [-\pi, \pi]. \]

Since \(g(x) = -\ln q_1 \) for \(x \in W_1^* \) and \(g(x) = -\ln q_{n+1} \) for \(x \in W_{n+1}^* \setminus \bigcup_{k=1}^{n} W_k^* \), this limit is \(q_1 \) on \(W_1 \) and \(q_{n+1} \) on \(W_{n+1} \setminus \bigcup_{k=1}^{n} W_k^* \). If \(\bigcup_{\lambda>1} S_\lambda = [-\pi, \pi] \), then the limit is clearly never 0.

To show that the radial limit of \(H \) itself exists on \(W_1 \) it suffices to show that \(\lim_{\gamma \to 1} \int_{\gamma}^{\infty} (J((w, w + t)) - J((w - t, w))/t^2 \, dt \) is finite for all \(w \in W \) [1, p. 173]. The finiteness of this integral follows from Lemma 3. Q.E.D.

REFERENCES

Department of Mathematics, University of Wisconsin, West Bend, Wisconsin 53095